Citation: | CHENG Hai-yong, WU Ai-xiang, WU Shun-chuan, ZHU Jia-qi, LI Hong, LIU Jin, NIU Yong-hui. Research status and development trend of solid waste backfill in metal mines[J]. Chinese Journal of Engineering, 2022, 44(1): 11-25. doi: 10.13374/j.issn2095-9389.2021.03.08.001 |
[1] |
Yin S H, Shao Y J, Wu A X, et al. A systematic review of paste technology in metal mines for cleaner production in China. J Clean Prod, 2020, 247: 119590 doi: 10.1016/j.jclepro.2019.119590
|
[2] |
中華人民共和國自然資源部. 中國礦產資源報告. 北京: 地質出版社, 2020
Ministry of Natural Resources. China Mineral Resources. Beijng: Geological Publishing House, 2020
|
[3] |
Wu A X, Ruan Z E, Bürger R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology. Miner Eng, 2020, 156: 106488 doi: 10.1016/j.mineng.2020.106488
|
[4] |
吳愛祥, 王勇, 張敏哲, 等. 金屬礦山地下開采關鍵技術新進展與展望. 金屬礦山, 2021(1):1
Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Met Mine, 2021(1): 1
|
[5] |
劉同有, 蔡嗣經. 國內外膏體充填技術的應用與研究現狀. 中國礦業, 1998, 7(5):1
Liu T Y, Cai S J. Status quo of application and research of paste fill technology in China and abroad. China Min Mag, 1998, 7(5): 1
|
[6] |
陳慶發, 陳青林. 同步充填采礦技術理念及一種代表性采礦方法. 中國礦業, 2015, 24(12):86 doi: 10.3969/j.issn.1004-4051.2015.12.018
Chen Q F, Chen Q L. Synchronous filling mining technology idea and a kind of representative mining method. China Min Mag, 2015, 24(12): 86 doi: 10.3969/j.issn.1004-4051.2015.12.018
|
[7] |
韋才壽, 陳慶發. “同步充填”研究進展與發展方向展望. 金屬礦山, 2020(5):9
Wei C S, Chen Q F. Study progress and prospect of the development direction of “synchronous filling”. Met Mine, 2020(5): 9
|
[8] |
劉浪, 辛杰, 張波, 等. 礦山功能性充填基礎理論與應用探索. 煤炭學報, 2018, 43(7):1811
Liu L, Xin J, Zhang B, et al. Basic theories and applied exploration of functional backfill in mines. J China Coal Soc, 2018, 43(7): 1811
|
[9] |
劉浪, 方治余, 張波, 等. 礦山充填技術的演進歷程與基本類別. 金屬礦山, 2021(3):1
Liu L, Fang Z Y, Zhang B, et al. Development history and basic categories of mine backfill technology. Met Mine, 2021(3): 1
|
[10] |
Belem T, Benzaazoua M. Design and application of underground mine paste backfill technology. Geotech Geol Eng, 2008, 26(2): 147 doi: 10.1007/s10706-007-9154-3
|
[11] |
蔡嗣經. 礦山充填力學基礎. 2版. 北京: 冶金工業出版社, 2009
Cai S J. Fundamentals of mine filling Mechanics. 2nd ed. Beijing: Metallurgical Industry Press, 2009
|
[12] |
吳愛祥, 李紅, 程海勇, 等. 全尾砂膏體流變學研究現狀與展望(上): 概念、特性與模型. 工程科學學報, 2020, 42(7):803
Wu A X, Li H, Cheng H Y, et al. Status and prospects of researches on rheology of paste backfill using unclassifiedtailings (Part 1): Concepts, characteristics and models. Chin J Eng, 2020, 42(7): 803
|
[13] |
Cheng H Y, Wu S C, Zhang X Q, et al. Effect of particle gradation characteristics on yield stress of cemented paste backfill. Int J Miner Metall Mater, 2020, 27(1): 10 doi: 10.1007/s12613-019-1865-y
|
[14] |
Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
|
[15] |
勒治華, 于慶磊, 鄭浩田, 等. 側限條件下充填散體與巖柱相互作用機理. 東北大學學報(自然科學版), 2021, 42(1):124 doi: 10.12068/j.issn.1005-3026.2021.01.019
Le Z H, Yu Q L, Zheng H T, et al. Interaction mechanism between granular backfill and rock pillar under lateral confined conditions. J Northeast Univ Nat Sci, 2021, 42(1): 124 doi: 10.12068/j.issn.1005-3026.2021.01.019
|
[16] |
王俊. 空場嗣后充填連續開采膠結體強度模型及其應用[學位論文]. 昆明: 昆明理工大學, 2017
Wang J. Cement Strength Model and Its Application in Open Stope Continuous Mining with Subsequent Filling [Dissertation]. Kunming: Kunming University of Science and Technology, 2017
|
[17] |
陳玉賓. 上向分層充填體強度模型及應用[學位論文]. 昆明: 昆明理工大學, 2014
Chen Y B. Strength Model and Application of Upward Layered Filling Body [Dissertation]. Kunming: Kunming University of Science and Technology, 2014
|
[18] |
汪杰. 分層膠結充填體損破演化機理與強度模型研究及應用[學位論文]. 北京: 北京科技大學, 2021
Wang J. Research and Application of Damage and Failure Evolution Mechanism and Strength Model of Layered Cemented Tailings Backfill [Dissertation]. Beijing: University of Science and Technology Beijing, 2021
|
[19] |
劉光生. 充填體與圍巖接觸成拱作用機理及強度模型研究[學位論文]. 北京: 北京科技大學, 2017
Liu G S. Required Strength Model of Cemented Backfill with Research on Arching Mechanism Considering Backfill-Rock Interaction [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
|
[20] |
Walker W J, Wa S C S, Montoy J, et al. Sulfate removal from coal mine water in western Pennsylvania: Regulatory requirements, design, and performance. J Am Soc Min Reclam, 2015, 4(1): 73
|
[21] |
陳順滿. 壓力—溫度效應下膏體充填體力學特性及響應機制研究[學位論文]. 北京: 北京科技大學, 2020
Chen S M. Research on the Mechanical Characteristics and Its Response Mechanism of Cemented Paste Backfill under the Effect of Stress and Temperature [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
|
[22] |
Chen S M, Wu A X, Wang Y M, et al. Coupled effects of curing stress and curing temperature on mechanical and physical properties of cemented paste backfill. Constr Build Mater, 2021, 273: 121746 doi: 10.1016/j.conbuildmat.2020.121746
|
[23] |
Cui L, Fall M. Multiphysics model for consolidation behavior of cemented paste backfill. Int J Geomech, 2017, 17(3): 04016077 doi: 10.1061/(ASCE)GM.1943-5622.0000743
|
[24] |
薛振林, 閆澤鵬, 焦華喆, 等. 全尾砂深錐濃密過程中絮團的動態沉降規律. 中國有色金屬學報, 2020, 30(9):2206 doi: 10.11817/j.ysxb.1004.0609.2020-37563
Xue Z L, Yan Z P, Jiao H Z, et al. Dynamic settlement law of flocs during unclassified tailings in deep cone thickening process. Chin J Nonferrous Met, 2020, 30(9): 2206 doi: 10.11817/j.ysxb.1004.0609.2020-37563
|
[25] |
焦華喆, 王樹飛, 吳愛祥, 等. 剪切濃密床層孔隙網絡模型與導水通道演化. 工程科學學報, 2019, 41(8):987
Jiao H Z, Wang S F, Wu A X, et al. Pore network model of tailings thickener bed and water drainage channel evolution under the shearing effect. Chin J Eng, 2019, 41(8): 987
|
[26] |
焦華喆, 劉晨生, 吳愛祥, 等. 初始湍流強度與耙架剪切對全尾砂絮凝行為的影響. 工程科學與技術, 2020, 52(2):54
Jiao H Z, Liu C S, Wu A X, et al. Influence of initial turbulence intensity and rake frame shear on flocculation behavior of unclassified-tailings. Adv Eng Sci, 2020, 52(2): 54
|
[27] |
李公成. 全尾砂絮團尺寸變化及其濃密性能研究[學位論文]. 北京: 北京科技大學, 2019
Li G C. Study on Size Change of Unclassified Tailings Flocs and Its Thickening Performance [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
|
[28] |
周旭. 全尾砂濃密過程絮團結構演化及脫水規律研究[學位論文]. 北京: 北京科技大學, 2019
Zhou X. Study on Rules of Aggregate Structure Evolution and Mud Densification during Unclassified Tailings Thickening [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
|
[29] |
阮竹恩. 給料井內全尾砂絮凝行為及其優化應用研究[學位論文]. 北京: 北京科技大學, 2021
Ruan Z E. Study on Flocculation Behavior of Total Tailings in Feedwell and Its Optimization and Application [Dissertation]. Beijing: University of Science and Technology Beijing, 2021
|
[30] |
阮竹恩, 吳愛祥, 王貽明, 等. 絮凝沉降對濃縮超細尾砂料漿屈服應力的影響. 工程科學學報, https://doi.org/10.13374/j.issn2095-9389.2020.08.01.002
Ruan Z E, Wu A X, Wang Y M, et al. Effect of flocculation sedimentation on the yield stress of thickened ultrafine tailings slurry. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2020.08.01.002
|
[31] |
Yang L H, Wang H J, Wu A X, et al. Effect of mixing time on hydration kinetics and mechanical property of cemented paste backfill. Constr Build Mater, 2020, 247: 118516 doi: 10.1016/j.conbuildmat.2020.118516
|
[32] |
王洪江, 楊柳華, 王勇, 等. 全尾砂膏體多尺度物料攪拌均質化技術. 武漢理工大學學報, 2017, 39(12):76
Wang H J, Yang L H, Wang Y, et al. Multi-scale materials’ dispersive mixing technology of unclassified tailings paste. J Wuhan Univ Technol, 2017, 39(12): 76
|
[33] |
楊柳華. 膏體攪拌過程流變特性及剪切作用機制研究[學位論文]. 北京: 北京科技大學, 2020
Yang L H. Research on the Rheological Characteristics and the Mechanism of Shear Action during Paste Mixing [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
|
[34] |
甘德清, 孫海寬, 薛振林, 等. 溫度影響下的充填料漿大流量管輸流態演化. 中國礦業大學學報, 2021, 50(2):248
Gan D Q, Sun H K, Xue Z L, et al. Transport state evolution of the packed slurry with the influence of temperature. J China Univ Min Technol, 2021, 50(2): 248
|
[35] |
孫征南. 基于人工智能理論的采礦方法選擇的研究[學位論文]. 沈陽: 東北大學, 2009
Sun Z N. Choice of Mining Methods Based on Artificial Intelligence Theory [Dissertation]. Shenyang: Northeastern University, 2009
|
[36] |
周科平. 地下金屬礦山采礦方法的智能選擇. 中國有色金屬學報, 1998, 8(增刊2): 673
Zhou K P. Intelligent selection of mining methods in underground metal mines. Chin J Nonferrous Met, 1998, 8(Suppl 2): 673
|
[37] |
李立濤, 高謙, 楊志強, 等. 礦用充填膠凝材料激發劑配比智能優化決策. 哈爾濱工業大學學報, 2019, 51(10):137 doi: 10.11918/j.issn.0367-6234.201806028
Li L T, Gao Q, Yang Z Q, et al. Intelligent optimization for the activator proportion of filling cementitions material. J Harbin Inst Technol, 2019, 51(10): 137 doi: 10.11918/j.issn.0367-6234.201806028
|
[38] |
齊沖沖, 楊星雨, 李桂臣, 等. 新一代人工智能在礦山充填中的應用綜述與展望. 煤炭學報, 2021, 46(2):688
Qi C C, Yang X Y, Li G C, et al. Research status and perspectives of the application of artificial intelligence in mine backfilling. J China Coal Soc, 2021, 46(2): 688
|
[39] |
Boubou R, Emeriault F, Kastner R. Artificial neural network application for the prediction of ground surface movements induced by shield tunnelling. Can Geotech J, 2010, 47(11): 1214 doi: 10.1139/T10-023
|
[40] |
Orejarena L, Fall M. The use of artificial neural networks to predict the effect of sulphate attack on the strength of cemented paste backfill. Bull Eng Geol Environ, 2010, 69(4): 659 doi: 10.1007/s10064-010-0326-7
|
[41] |
Qi C C, Fourie A, Chen Q S, et al. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill. J Clean Prod, 2018, 183: 566 doi: 10.1016/j.jclepro.2018.02.154
|
[42] |
張國勝, 陳彥亭, 胡亞軍, 等. 基于人工智能神經網絡新型充填膠凝材料配比研究. 礦業研究與開發, 2020, 40(9):143
Zhang G S, Chen Y T, Hu Y J, et al. Research on mixing proportions of a new backfilling cementitious material based on artificial intelligence neural network. Min Res Dev, 2020, 40(9): 143
|
[43] |
王志會, 吳愛祥, 王貽明. 膠結充填體強度設計三維解析模型進展及展望. 礦業研究與開發, 2020, 40(1):37
Wang Z H, Wu A X, Wang Y M. Progress and prospect of three-dimensional analytical model for the strength design of cemented filling body. Min Res Dev, 2020, 40(1): 37
|
[44] |
Qi C C, Fourie A, Chen Q S. Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill. Constr Build Mater, 2018, 159: 473 doi: 10.1016/j.conbuildmat.2017.11.006
|
[45] |
Qi C C, Fourie A, Ma G W, et al. Comparative study of hybrid artificial intelligence approaches for predicting hangingwall stability. J Comput Civ Eng, 2018, 32(2): 04017086 doi: 10.1061/(ASCE)CP.1943-5487.0000737
|
[46] |
Qi C C, Chen Q S, Fourie A, et al. Constitutive modelling of cemented paste backfill: A data-mining approach. Constr Build Mater, 2019, 197: 262 doi: 10.1016/j.conbuildmat.2018.11.142
|
[47] |
吳愛祥, 李紅, 楊柳華, 等. 深地開采,膏體先行. 黃金, 2020, 41(9):51
Wu A X, Li H, Yang L H, et al. Cemented paste backfill paves the way for deep mining. Gold, 2020, 41(9): 51
|