<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
CHEN Xun, YIN Sheng-hua, YAN Rong-fu, WANG Lei-ming. Evolution characteristics of mesoscopic pore structure of weathered crust elution-deposited rare earth ore under solution seepage[J]. Chinese Journal of Engineering, 2021, 43(10): 1283-1294. doi: 10.13374/j.issn2095-9389.2021.02.24.003
Citation: CHEN Xun, YIN Sheng-hua, YAN Rong-fu, WANG Lei-ming. Evolution characteristics of mesoscopic pore structure of weathered crust elution-deposited rare earth ore under solution seepage[J]. Chinese Journal of Engineering, 2021, 43(10): 1283-1294. doi: 10.13374/j.issn2095-9389.2021.02.24.003

Evolution characteristics of mesoscopic pore structure of weathered crust elution-deposited rare earth ore under solution seepage

doi: 10.13374/j.issn2095-9389.2021.02.24.003
More Information
  • Corresponding author: E-mail: 357664177@qq.com
  • Received Date: 2021-02-24
    Available Online: 2021-09-28
  • Publish Date: 2021-10-12
  • In-situ leaching is extensively used in the mining industry to recover rare earths from weathered crust elution-deposited rare earth ore. In the leaching system, the pore structure of rare earth ore is one of the most important factors that influence the leaching performance. A small column leaching experiment was performed with deionized water as a leaching solution to study the effect of solution seepage on pore structure evolution characteristics in the leaching process of weathering crust eluviation rare earth ore. Micro-computed tomography (micro-CT) was performed on the ore sample before and after leaching, and internal structure images of the sample were obtained. The pore structures of the rare earth ore sample were obtained using the threshold segmentation algorithm. The variation characteristics of pore structure of a rare earth ore sample under the action of solution seepage were then studied, and the effects of solution seepage on sample porosity, pore volume, length, width, azimuthal angle, and other parameters were analyzed. The results show that the pore shape and size of rare earth ore change significantly due to solution seepage, most notably in the contact area of the coarse and fine particles. The solution seepage increases the porosity of rare earth ore, decreases the total number of pores, and increases the total volume of pores. Besides, the number of small and medium-sized pores decreases, while the number of large pores increases due to seepage. The change rate of the number of pores in each size interval increases and then decreases as pore size increases. Compared with the initial state, the distribution of pore aspect ratio is more concentrated after the solution seepage. Moreover, the distribution of pore azimuthal angle is more uniform, and the anisotropy of pore structure is enhanced by solution seepage.

     

  • loading
  • [1]
    Goodenough K M, Wall F, Merriman D. The rare earth elements: Demand, global resources, and challenges for resourcing future generations. Nat Resour Res, 2018, 27(2): 201 doi: 10.1007/s11053-017-9336-5
    [2]
    Nie W R, Zhang R, He Z Y, et al. Research progress on leaching technology and theory of weathered crust elution-deposited rare earth ore. Hydrometallurgy, 2020, 193: 105295 doi: 10.1016/j.hydromet.2020.105295
    [3]
    Tang J, Qiao J Y, Xue Q, et al. Leach of the weathering crust elution-deposited rare earth ore for low environmental pollution with a combination of (NH4)2SO4 and EDTA. Chemosphere, 2018, 199: 160 doi: 10.1016/j.chemosphere.2018.01.170
    [4]
    Huang X W, Long Z Q, Li H W, et al. Development of rare earth hydrometallurgy technology in China. J Rare Earths, 2005, 23(1): 1
    [5]
    Tian J, Yin J Q, Chen K H, et al. Optimisation of mass transfer in column elution of rare earths from low grade weathered crust elution-deposited rare earth ore. Hydrometallurgy, 2010, 103(1-4): 211 doi: 10.1016/j.hydromet.2010.04.003
    [6]
    Xiao Y F, Huang L, Long Z Q, et al. Adsorption ability of rare earth elements on clay minerals and its practical performance. J Rare Earths, 2016, 34(5): 543 doi: 10.1016/S1002-0721(16)60060-1
    [7]
    He Z Y, Zhang Z Y, Chi R A, et al. Leaching hydrodynamics of weathered elution-deposited rare earth ore with ammonium salts solution. J Rare Earths, 2017, 35(8): 824 doi: 10.1016/S1002-0721(17)60982-7
    [8]
    Zhou F, Liu Q, Feng J, et al. Role of initial moisture content on the leaching process of weathered crust elution-deposited rare earth ores. Sep Purif Technol, 2019, 217: 24 doi: 10.1016/j.seppur.2019.02.010
    [9]
    尹升華, 陳勛, 劉超, 等. 礦石顆粒級配對堆浸體系三維孔隙結構的影響. 工程科學學報, 2020, 42(8):972

    Yin S H, Chen X, Liu C, et al. Effects of ore size distribution on the pore structure characteristics of packed ore beds. Chin J Eng, 2020, 42(8): 972
    [10]
    池汝安, 劉雪梅. 風化殼淋積型稀土礦開發的現狀及展望. 中國稀土學報, 2019, 37(2):129

    Chi R A, Liu X M. Prospect and development of weathered crust elution-deposited rare earth ore. J Chin Soc Rare Earths, 2019, 37(2): 129
    [11]
    尹升華, 齊炎, 謝芳芳, 等. 風化殼淋積型稀土礦浸出前后孔隙結構特性. 中國有色金屬學報, 2018, 28(10):2112

    Yin S H, Qi Y, Xie F F, et al. Porosity characteristic of leaching weathered crust elution-deposited rare earth before and after leaching. Chin J Nonferrous Met, 2018, 28(10): 2112
    [12]
    Zhao K, Zhuo Y L, Wang X J, et al. Aggregate evolution mechanism during ion-adsorption rare earth ore leaching. Adv Mater Sci Eng, 2018, 2018: 1
    [13]
    王曉軍, 李永欣, 黃廣黎, 等. 浸礦過程離子型稀土礦孔隙結構演化規律研究. 中國稀土學報, 2017, 35(4):528

    Wang X J, Li Y X, Huang G L, et al. Changes of pore structure in leaching ion-adsorption type rare earth ore. J Chin Soc Rare Earths, 2017, 35(4): 528
    [14]
    劉德峰, 張臻悅, 池汝安. 風化殼淋積型稀土礦原地浸出微觀滲流機制. 稀土, 2020, 41(4):1

    Liu D F, Zhang Z Y, Chi R A. Microscopic seepage mechanism during in situ leaching of weathered crust elution-deposited rare earth ores. Chin Rare Earths, 2020, 41(4): 1
    [15]
    謝芳芳, 尹升華, 袁長林, 等. 浸礦液對離子型稀土礦孔隙影響機制研究. 稀土, 2018, 39(6):48

    Xie F F, Yin S H, Yuan C L, et al. Study on the influence mechanism of leaching solution on pore of ionic rare earth ore. Chin Rare Earths, 2018, 39(6): 48
    [16]
    Zhou L B, Wang X J, Zhuo Y L, et al. Dynamic pore structure evolution of the ion adsorbed rare earth ore during the ion exchange process. Royal Soc Open Sci, 2019, 6(11): 191107 doi: 10.1098/rsos.191107
    [17]
    Cnudde V, Boone M N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth Sci Rev, 2013, 123: 1 doi: 10.1016/j.earscirev.2013.04.003
    [18]
    Dhawan N, Safarzadeh M S, Miller J D, et al. Recent advances in the application of X-ray computed tomography in the analysis of heap leaching systems. Miner Eng, 2012, 35: 75 doi: 10.1016/j.mineng.2012.03.033
    [19]
    楊保華, 吳愛祥, 繆秀秀. 基于圖像處理的礦石顆粒三維微觀孔隙結構演化. 工程科學學報, 2016, 38(3):328

    Yang B H, Wu A X, Miao X X. 3D micropore structure evolution of ore particles based on image processing. Chin J Eng, 2016, 38(3): 328
    [20]
    Yang Y, Yang Y S, Gao X Y, et al. Microstructure evolution of low-grade chalcopyrite ores in chloride leaching - A synchrotron-based X-ray CT approach combined with a data-constrained modelling (DCM). Hydrometallurgy, 2019, 188: 1 doi: 10.1016/j.hydromet.2019.06.004
    [21]
    Hoummady E, Golfier F, Cathelineau M, et al. A multi-analytical approach to the study of uranium-ore agglomerate structure and porosity during heap leaching. Hydrometallurgy, 2017, 171: 33 doi: 10.1016/j.hydromet.2017.04.011
    [22]
    Chang D S, Zhang L M. Extended internal stability criteria for soils under seepage. Soils Found, 2013, 53(4): 569 doi: 10.1016/j.sandf.2013.06.008
    [23]
    卓毓龍, 王曉軍, 曹世榮, 等. 滲流作用下稀土礦孔隙結構與強度弱化關系研究. 黃金科學技術, 2017, 25(5):101 doi: 10.11872/j.issn.1005-2518.2017.05.101

    Zhuo Y L, Wang X J, Cao S R, et al. Study on relationship between pore structure and strength weakening of rare earth ore under seepage. Gold Sci Technol, 2017, 25(5): 101 doi: 10.11872/j.issn.1005-2518.2017.05.101
    [24]
    劉德峰, 張臻悅, 池汝安, 等. 粒徑對風化殼淋積型稀土礦強度特性影響的實驗研究. 有色金屬工程, 2020, 10(6):97 doi: 10.3969/j.issn.2095-1744.2020.06.015

    Liu D F, Zhang Z Y, Chi R A, et al. Experimental study on the influence of particle size on the strength characteristics of weathered crust elution-deposited rare earth ores. Nonferrous Met Eng, 2020, 10(6): 97 doi: 10.3969/j.issn.2095-1744.2020.06.015
    [25]
    曹志翔, 韓憲東, 趙素華, 等. 含水率對非飽和砂土抗剪強度影響試驗研究. 河南理工大學學報(自然科學版), 2019, 38(5):159

    Cao Z X, Han X D, Zhao S H, et al. Experimental study on the effect of moisture content on shear strength of unsaturated sandy soil. J Henan Polytech Univ Nat Sci, 2019, 38(5): 159
    [26]
    Kouakou N M, Cuisinier O, Masrouri F. Estimation of the shear strength of coarse-grained soils with fine particles. Transp Geotech, 2020, 25: 100407 doi: 10.1016/j.trgeo.2020.100407
    [27]
    Cheng K, Wang Y, Yang Q. A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils. Comput Geotech, 2018, 100: 30 doi: 10.1016/j.compgeo.2018.04.004
    [28]
    袁俊平, 詹斌, 陳勝超, 等. 含水率和壓實度對路基填土力學特性的影響. 水利與建筑工程學報, 2013, 11(2):98 doi: 10.3969/j.issn.1672-1144.2013.02.023

    Yuan J P, Zhan B, Chen S C, et al. Effects of water content and compaction degree on mechanical characteristics of roadbed. J Water Resour Archit Eng, 2013, 11(2): 98 doi: 10.3969/j.issn.1672-1144.2013.02.023
    [29]
    Wei Y N, Fan W, Yu B, et al. Characterization and evolution of three-dimensional microstructure of Malan loess. CATENA, 2020, 192: 104585 doi: 10.1016/j.catena.2020.104585
    [30]
    ?nan Sezer G, Ramyar K, Karasu B, et al. Image analysis of sulfate attack on hardened cement paste. Mater Des, 2008, 29(1): 224 doi: 10.1016/j.matdes.2006.12.006
    [31]
    Kong L Y, Ostadhassan M, Hou X D, et al. Microstructure characteristics and fractal analysis of 3D-printed sandstone using micro-CT and SEM-EDS. J Petroleum Sci Eng, 2019, 175: 1039 doi: 10.1016/j.petrol.2019.01.050
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(19)  / Tables(2)

    Article views (607) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频