Citation: | ZONG Le, XU Liu-jie, LUO Chun-yang, WEI Shi-zhong. Refractory high-entropy alloys: A review of preparation methods and properties[J]. Chinese Journal of Engineering, 2021, 43(11): 1459-1473. doi: 10.13374/j.issn2095-9389.2021.01.27.003 |
[1] |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567
|
[2] |
Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu?Co?Ni?Cr?Al?Fe?Ti?V alloys with multiprincipal metallic elements. Metall Mater Trans A, 2004, 35(8): 2533 doi: 10.1007/s11661-006-0234-4
|
[3] |
Tsai Y L, Wang S F, Bor H Y, et al. Effects of alloy elements on microstructure and creep properties of fine-grained nickel-based superalloys at moderate temperatures. Mater Sci Eng A, 2013, 571: 155 doi: 10.1016/j.msea.2013.02.002
|
[4] |
楊曉寧, 鄧偉林, 黃曉波, 等. 高熵合金制備方法進展. 熱加工工藝, 2014, 43(22):30
Yang X N, Deng W L, Huang X B, et al. Research on preparation methods of high-entropy alloy. Hot Work Technol, 2014, 43(22): 30
|
[5] |
郭文晶. 機械合金化NbMoTaW(V)高熔點高熵合金的組織及其性能[學位論文]. 廣州: 華南理工大學, 2016
Guo W J. Microstructure and Mechanical Properties of NbMoTaW(V) High-Entropy Alloy Prepared by Mechanical Alloying [Dissertation]. Guangzhou: South China University of Technology, 2016
|
[6] |
Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5 Six high-entropy composites. J Alloys Compd, 2017, 694: 869 doi: 10.1016/j.jallcom.2016.10.014
|
[7] |
何春靜, 劉雄軍, 張盼, 等. 粉末冶金在高熵材料中的應用. 工程科學學報, 2019, 41(12):1501
He C J, Liu X J, Zhang P, et al. Applications of powder metallurgy technology in high-entropy materials. Chin J Eng, 2019, 41(12): 1501
|
[8] |
Sheng W J, Yang X, Wang C, et al. Nano-crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering. Entropy, 2016, 18(6): 226 doi: 10.3390/e18060226
|
[9] |
辛蔚, 王玉江, 魏世丞, 等. 熱噴涂制備高熵合金涂層的研究現狀與展望. 工程科學學報, 2021, 43(2):170
Xin W, Wang Y J, Wei S C, et al. Research progress of the preparation of high entropy alloy coatings by spraying. Chin J Eng, 2021, 43(2): 170
|
[10] |
Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corros Sci, 2005, 47(9): 2257 doi: 10.1016/j.corsci.2004.11.008
|
[11] |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698 doi: 10.1016/j.intermet.2011.01.004
|
[12] |
Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater Sci Eng A, 2018, 712: 380 doi: 10.1016/j.msea.2017.12.004
|
[13] |
Yan X H, Li J S, Zhang W R, et al. A brief review of high-entropy films. Mater Chem Phys, 2018, 210: 12 doi: 10.1016/j.matchemphys.2017.07.078
|
[14] |
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd, 2011, 509(20): 6043 doi: 10.1016/j.jallcom.2011.02.171
|
[15] |
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci, 2012, 47(9): 4062 doi: 10.1007/s10853-012-6260-2
|
[16] |
Yang X, Zhang Y, Liaw P K. Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Eng, 2012, 36: 292 doi: 10.1016/j.proeng.2012.03.043
|
[17] |
Zhang Y, Yang X, Liaw P K. Alloy design and properties optimization of high-entropy alloys. JOM, 2012, 64(7): 830 doi: 10.1007/s11837-012-0366-5
|
[18] |
Senkov O N, Senkova S V, Miracle D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr?Nb?Ti?V?Zr system. Mater Sci Eng A, 2013, 565: 51 doi: 10.1016/j.msea.2012.12.018
|
[19] |
Senkov O N, Senkova S V, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr?Nb?Ti?V?Zr system: Microstructure and phase analysis. Acta Mater, 2013, 61(5): 1545 doi: 10.1016/j.actamat.2012.11.032
|
[20] |
Wu Y D, Cai Y H, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater Lett, 2014, 130: 277 doi: 10.1016/j.matlet.2014.05.134
|
[21] |
Liu C M, Wang H M, Zhang S Q, et al. Microstructure and oxidation behavior of new refractory high entropy alloys. J Alloys Compd, 2014, 583: 162 doi: 10.1016/j.jallcom.2013.08.102
|
[22] |
Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM, 2014, 66(10): 2030 doi: 10.1007/s11837-014-1066-0
|
[23] |
Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater, 2014, 68: 214 doi: 10.1016/j.actamat.2014.01.029
|
[24] |
Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett, 2015, 142: 153 doi: 10.1016/j.matlet.2014.11.162
|
[25] |
Juan C C, Tsai M H, Tsai C W, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics, 2015, 62: 76 doi: 10.1016/j.intermet.2015.03.013
|
[26] |
Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater, 2016, 106: 87 doi: 10.1016/j.actamat.2016.01.018
|
[27] |
顏建輝, 李凱玲, 汪異, 等. 機械合金化和放電等離子燒結制備NbMoCrTiAl高熵合金. 材料導報, 2019, 33(10):1671 doi: 10.11896/cldb.18020113
Yan J H, Li K L, Wang Y, et al. NbMoCrTiAl high-entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater Rep, 2019, 33(10): 1671 doi: 10.11896/cldb.18020113
|
[28] |
Yao H W, Qiao J W, Hawk J A, et al. Mechanical properties of refractory high-entropy alloys: experiments and modeling. J Alloys Compd, 2017, 696: 1139 doi: 10.1016/j.jallcom.2016.11.188
|
[29] |
Han Z D, Chen N, Zhao S F, et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics, 2017, 84: 153 doi: 10.1016/j.intermet.2017.01.007
|
[30] |
Karantzalis A E, Poulia A, Georgatis E, et al. Phase formation criteria assessment on the microstructure of a new refractory high entropy alloy. Scr Mater, 2017, 131: 51 doi: 10.1016/j.scriptamat.2017.01.004
|
[31] |
Chen H, Kauffmann A, Laube S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys. Metall Mater Trans A, 2018, 49(3): 772 doi: 10.1007/s11661-017-4386-1
|
[32] |
Fazakas é, Zadorozhnyy V, Varga L K, et al. Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X=V or Cr) refractory high-entropy alloys. Int J Refract Met Hard Mater, 2014, 47: 131 doi: 10.1016/j.ijrmhm.2014.07.009
|
[33] |
Li J M, Yang X, Zhu R L, et al. Corrosion and serration behaviors of TiZr0.5NbCr0.5VxMoy high entropy alloys in aqueous environments. Metals, 2014, 4(4): 597 doi: 10.3390/met4040597
|
[34] |
Gorr B, Azim M, Christ H J, et al. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J Alloys Compd, 2015, 624: 270 doi: 10.1016/j.jallcom.2014.11.012
|
[35] |
Gorr B, Müller F, Azim M, et al. High-temperature oxidation behavior of refractory high-entropy alloys: Effect of alloy composition. Oxid Met, 2017, 88(3-4): 339 doi: 10.1007/s11085-016-9696-y
|
[36] |
Senkov O N, Isheim D, Seidman D N, et al. Development of a refractory high entropy superalloy. Entropy, 2016, 18(3): 102 doi: 10.3390/e18030102
|
[37] |
Jensen J K, Welk B A, Williams R E A, et al. Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1. Scr Mater, 2016, 121: 1 doi: 10.1016/j.scriptamat.2016.04.017
|
[38] |
Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater Des, 2018, 139: 498 doi: 10.1016/j.matdes.2017.11.033
|
[39] |
Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv Mater, 2017, 29(30): 1701678 doi: 10.1002/adma.201701678
|
[40] |
Jiang H, Jiang L, Lu Y P, et al. Microstructure and mechanical properties of the W-Ni-Co system refractory high-entropy alloys. Mater Sci Forum, 2015, 816: 324 doi: 10.4028/www.scientific.net/MSF.816.324
|
[41] |
Yao H W, Qiao J W, Gao M C, et al. NbTaV-(Ti, W) refractory high-entropy alloys: Experiments and modeling. Mater Sci Eng A, 2016, 674: 203 doi: 10.1016/j.msea.2016.07.102
|
[42] |
Sosa J M, Jensen J K, Huber D E, et al. Three-dimensional characterisation of the microstructure of an high entropy alloy using STEM/HAADF tomography. Mater Sci Technol, 2015, 31(10): 1250 doi: 10.1179/1743284715Y.0000000049
|
[43] |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563(7732): 546 doi: 10.1038/s41586-018-0685-y
|
[44] |
Diao H Y, Xie X, Sun F, et al. Mechanical properties of high-entropy alloys. High-Entropy Alloys, 2016: 181
|
[45] |
Waseem O A, Lee J, Lee H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials. Mater Chem Phys, 2018, 210: 87 doi: 10.1016/j.matchemphys.2017.06.054
|
[46] |
Zhang B, Gao M C, Zhang Y, et al. Senary refractory high-entropy alloy CrxMoNbTaVW. Calphad, 2015, 51: 193 doi: 10.1016/j.calphad.2015.09.007
|
[47] |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1 doi: 10.1016/j.pmatsci.2013.10.001
|
[48] |
Chen S, Yang X, Dahmen K, et al. Microstructures and crackling noise of AlxNbTiMoV high entropy alloys. Entropy, 2014, 16(2): 870 doi: 10.3390/e16020870
|
[49] |
Qiao D X, Jiang H, Chang X X, et al. Microstructure and mechanical properties of VTaTiMoAlx refractory high entropy alloys. Mater Sci Forum, 2017, 898: 638 doi: 10.4028/www.scientific.net/MSF.898.638
|
[50] |
Gao M C, Zhang B, Yang S, et al. Senary refractory high-entropy alloy HfNbTaTiVZr. Metall Mater Trans A, 2016, 47(7): 3333 doi: 10.1007/s11661-015-3105-z
|
[51] |
Zhang B, Gao M C, Zhang Y, et al. Senary refractory high entropy alloy MoNbTaTiVW. Mater Sci Technol, 2015, 31(10): 1207 doi: 10.1179/1743284715Y.0000000031
|
[52] |
魏世忠, 徐流杰. 鋼鐵耐磨材料研究進展. 金屬學報, 2020, 56(4):523 doi: 10.11900/0412.1961.2019.00370
Wei S Z, Xu L J. Review on research progress of steel and iron wear-resistant materials. Acta Metall Sin, 2020, 56(4): 523 doi: 10.11900/0412.1961.2019.00370
|
[53] |
Liu X T, Lei W B, Ma L J, et al. Effect of boron on the microstructure, phase assemblage and wear properties of Al05CoCrCuFeNi high-entropy alloy. Rare Met Mater Eng, 2016, 45(9): 2201 doi: 10.1016/S1875-5372(17)30003-6
|
[54] |
Tong C J, Chen M R, Yeh J W, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A, 2005, 36: 1263 doi: 10.1007/s11661-005-0218-9
|
[55] |
Poulia A, Georgatis E, Lekatou A, et al. Dry-sliding wear response of MoTaWNbV high entropy alloy. Adv Eng Mater, 2017, 19(2): 1600535 doi: 10.1002/adem.201600535
|
[56] |
Poulia A, Georgatis E, Lekatou A, et al. Microstructure and wear behavior of a refractory high entropy alloy. Int J Refract Met Hard Mater, 2016, 57: 50 doi: 10.1016/j.ijrmhm.2016.02.006
|
[57] |
Mathiou C, Poulia A, Georgatis E, et al. Microstructural features and dry - Sliding wear response of MoTaNbZrTi high entropy alloy. Mater Chem Phys, 2018, 210: 126 doi: 10.1016/j.matchemphys.2017.08.036
|
[58] |
Ye Y X, Liu C Z, Wang H, et al. Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater, 2018, 147: 78 doi: 10.1016/j.actamat.2018.01.014
|
[59] |
Grigoriev S N, Sobol O V, Beresnev V M, et al. Tribological characteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method. J Frict Wear, 2014, 35(5): 359 doi: 10.3103/S1068366614050067
|
[60] |
Jayaraj J, Thinaharan C, Ningshen S, et al. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium. Intermetallics, 2017, 89: 123 doi: 10.1016/j.intermet.2017.06.002
|
[61] |
Wang S P, Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: as-cast microstructure and mechanical properties. Mater Sci Eng C, 2017, 73: 80 doi: 10.1016/j.msec.2016.12.057
|
[62] |
Senkov O N, Senkova S V, Dimiduk D M, et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. J Mater Sci, 2012, 47(18): 6522 doi: 10.1007/s10853-012-6582-0
|
[63] |
Gorr B, Mueller F, Christ H J, et al. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb?20Mo?20Cr?20Ti?20Al with and without Si addition. J Alloys Compd, 2016, 688: 468
|
[64] |
李天昕, 盧一平, 曹志強, 等. 難熔高熵合金在反應堆結構材料領域的機遇與挑戰. 金屬學報, 2021, 57(1):42 doi: 10.11900/0412.1961.2020.00293
Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials. Acta Metall Sin, 2021, 57(1): 42 doi: 10.11900/0412.1961.2020.00293
|
[65] |
Egami T, Guo W, Rack P D, et al. Irradiation resistance of multicomponent alloys. Metall Mater Trans A, 2014, 45(1): 180 doi: 10.1007/s11661-013-1994-2
|
[66] |
El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci Adv, 2019, 5(3): eaav2002 doi: 10.1126/sciadv.aav2002
|
[67] |
Lu Y P, Huang H F, Gao X Z, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J Mater Sci Technol, 2019, 35(3): 369 doi: 10.1016/j.jmst.2018.09.034
|
[68] |
Waseem O A, Ryu H J. Powder metallurgy processing of a WxTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications. Sci Rep, 2017, 7: 1926 doi: 10.1038/s41598-017-02168-3
|