Citation: | LIU Xi-ling, LIU Qing-lin, DU Kun, LI Xi-bing, XIE Qin. Acoustic emission features and P-wave first-motion polarity of tensile fractures in the rock[J]. Chinese Journal of Engineering, 2022, 44(8): 1315-1323. doi: 10.13374/j.issn2095-9389.2021.01.16.005 |
[1] |
阿特金森 B K. 巖石斷裂力學. 尹祥礎, 修濟剛, 譯. 北京: 地震出版社, 1992
Atkinson B K. Fracture Mechanics of Rock. Translated by Yin X C, Xiu J G. Beijing: Seismological Press, 1992
|
[2] |
Manthei G. Characterization of acoustic emission sources in a rock salt specimen under triaxial compression. Bull Seismol Soc Am, 2005, 95(5): 1674 doi: 10.1785/0120040076
|
[3] |
Alkan H, Cinar Y, Pusch G. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int J Rock Mech Min Sci, 2007, 44(1): 108 doi: 10.1016/j.ijrmms.2006.05.003
|
[4] |
Hu X C, Su G S, Chen G Y, et al. Experiment on rockburst process of borehole and its acoustic emission characteristics. Rock Mech Rock Eng, 2019, 52(3): 783 doi: 10.1007/s00603-018-1613-z
|
[5] |
Wang Y, He M C, Liu D Q, et al. Rockburst in sandstone containing elliptic holes with varying axial ratios. Adv Mater Sci Eng, 2019, 2019: 1
|
[6] |
Tao M, Ma A, Cao W Z, et al. Dynamic response of pre-stressed rock with a circular cavity subject to transient loading. Int J Rock Mech Min Sci, 2017, 99: 1 doi: 10.1016/j.ijrmms.2017.09.003
|
[7] |
Zhou Z L, Cai X, Li X B, et al. Dynamic response and energy evolution of sandstone under coupled static-dynamic compression: Insights from experimental study into deep rock engineering applications. Rock Mech Rock Eng, 2020, 53(3): 1305 doi: 10.1007/s00603-019-01980-9
|
[8] |
宮鳳強, 羅松, 李夕兵, 等. 紅砂巖張拉破壞過程中的線性儲能和耗能規律. 巖石力學與工程學報, 2018, 37(2):352
Gong F Q, Luo S, Li X B, et al. Rules of linear energy storage and energy dissipation in red sandstone during tensioning. Chin J Rock Mech Eng, 2018, 37(2): 352
|
[9] |
Luo S, Gong F Q. Linear energy storage and dissipation laws during rock fracture under three-point flexural loading. Eng Fract Mech, 2020, 234: 107102 doi: 10.1016/j.engfracmech.2020.107102
|
[10] |
Almerich-Chulia A, Fenollosa E, Cabrera I. GFRP bar: Determining tensile strength with bending test. Adv Mater Res, 2015, 1083: 90 doi: 10.4028/www.scientific.net/AMR.1083.90
|
[11] |
Mogi K. Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes (2nd Paper). Bull Earthquake Res Inst Univ Tokyo, 1962, 40: 831
|
[12] |
Scholz C H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am, 1968, 58(1): 399 doi: 10.1785/BSSA0580010399
|
[13] |
Scholz C H. On the stress dependence of the earthquake b value. Geophys Res Lett, 2015, 42(5): 1399 doi: 10.1002/2014GL062863
|
[14] |
Vorobieva I, Shebalin P, Narteau C. Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system. Geophys Res Lett, 2016, 43(13): 6869 doi: 10.1002/2016GL069636
|
[15] |
Liu X L, Han M S, He W, et al. A new b value estimation method in rock acoustic emission testing. J Geophys Res:Solid Earth, 2020, 125(12): e2020JB019658
|
[16] |
Aggelis D G, Mpalaskas A C, Matikas T E. Acoustic signature of different fracture modes in marble and cementitious materials under flexural load. Mech Res Commun, 2013, 47: 39 doi: 10.1016/j.mechrescom.2012.11.007
|
[17] |
Nejati H R, Nazerigivi A, Sayadi A R. Physical and mechanical phenomena associated with rock failure in Brazilian Disc Specimens. Int J of Geo and Env Eng, 2018, 12(1): 35
|
[18] |
劉希靈, 劉周, 李夕兵, 等. 劈裂荷載下的巖石聲發射及微觀破裂特性. 工程科學學報, 2019, 41(11):1422
Liu X L, Liu Z, Li X B, et al. Acoustic emission and micro-rupture characteristics of rocks under Brazilian splitting load. Chin J Eng, 2019, 41(11): 1422
|
[19] |
Xie Q, Li S X, Liu X L, et al. Effect of loading rate on fracture behaviors of shale under mode I loading. J Central South Univ, 2020, 27(10): 3118 doi: 10.1007/s11771-020-4533-5
|
[20] |
Du K, Li X F, Tao M, et al. Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests. Int J Rock Mech Min Sci, 2020, 133: 104411 doi: 10.1016/j.ijrmms.2020.104411
|
[21] |
Liu X L, Li X B, Hong L, et al. Acoustic emission characteristics of rock under impact loading. J Central South Univ, 2015, 22(9): 3571 doi: 10.1007/s11771-015-2897-8
|
[22] |
Liu X L, Liu Z, Li X B, et al. Experimental study on the effect of strain rate on rock acoustic emission characteristics. Int J Rock Mech Min Sci, 2020, 133: 104420 doi: 10.1016/j.ijrmms.2020.104420
|
[23] |
Aki K, Richards P G. Quantitative Seismology. 2nd Ed. Herndon: University Science Books, 2002
|
[24] |
王恩元, 何學秋, 劉貞堂, 等. 煤體破裂聲發射的頻譜特征研究. 煤炭學報, 2004, 29(3):289 doi: 10.3321/j.issn:0253-9993.2004.03.008
Wang E Y, He X Q, Liu Z T, et al. Study on frequency spectrum characteristics of acoustic emission in coal or rock deformation and fracture. J China Coal Soc, 2004, 29(3): 289 doi: 10.3321/j.issn:0253-9993.2004.03.008
|
[25] |
紀洪廣, 王宏偉, 曹善忠, 等. 花崗巖單軸受壓條件下聲發射信號頻率特征試驗研究. 巖石力學與工程學報, 2012, 31(增刊1): 2900
Ji H G, Wang H W, Cao S Z, et al. Experimental research on frequency characteristics of acoustic emission signals under uniaxial compression of granite. Chin J Rock Mech Eng, 2012, 31(Suppl 1): 2900
|
[26] |
宮宇新, 何滿潮, 汪政紅, 等. 巖石破壞聲發射時頻分析算法與瞬時頻率前兆研究. 巖石力學與工程學報, 2013, 32(4):787 doi: 10.3969/j.issn.1000-6915.2013.04.018
Gong Y X, He M C, Wang Z H, et al. Research on time-frequency analysis algorithm and instantaneous frequency precursors for acoustic emission data from rock failure experiment. Chin J Rock Mech Eng, 2013, 32(4): 787 doi: 10.3969/j.issn.1000-6915.2013.04.018
|
[27] |
張黎明, 馬紹瓊, 任明遠, 等. 不同圍壓下巖石破壞過程的聲發射頻率及b值特征. 巖石力學與工程學報, 2015, 34(10):2057
Zhang L M, Ma S Q, Ren M Y, et al. Acoustic emission frequency and B-value characteristics of rock failure process under different confining pressures. Chin J Rock Mech Eng, 2015, 34(10): 2057
|
[28] |
劉希靈, 崔佳慧, 李夕兵, 等. 不同類型巖石中彈性波衰減特性研究. 巖石力學與工程學報, 2018, 37(增刊1): 3223
Liu X L, Cui J H, Li X B, et al. Study on attenuation characteristics of elastic wave in different types of rocks. Chin J Rock Mech Eng, 2018, 37(Suppl 1): 3223
|
[29] |
Hafez A G, Khan T A, Kohda T. Earthquake onset detection using spectro-ratio on multi-threshold time-frequency sub-band. Digit Signal Process, 2009, 19(1): 118 doi: 10.1016/j.dsp.2008.08.003
|
[30] |
Hafez A G, Khan M T A, Kohda T. Clear P-wave arrival of weak events and automatic onset determination using wavelet filter banks. Digit Signal Process, 2010, 20(3): 715 doi: 10.1016/j.dsp.2009.10.002
|
[31] |
Saragiotis C D, Hadjileontiadis L J, Panas S M. PAI-S/K: A robust automatic seismic P phase arrival identification scheme. IEEE Trans Geosci Remote Sens, 2002, 40(6): 1395 doi: 10.1109/TGRS.2002.800438
|
[32] |
Maeda N. A method for reading and checking phase time in auto-processing system of seismic wave data. Zisin (J Seismol Soc Jpn 2nd Ser)
|
[33] |
Shang X Y, Li X B, Morales-Esteban A, et al. An improved P-phase arrival picking method S/L-K-A with an application to the yongshaba mine in China. Pure Appl Geophys, 2018, 175(6): 2121 doi: 10.1007/s00024-018-1789-x
|
[34] |
Zang A, Christian Wagner F, Stanchits S, et al. Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads. Geophys J Int, 1998, 135(3): 1113 doi: 10.1046/j.1365-246X.1998.00706.x
|
[35] |
Backers T, Stanchits S, Dresen G. Tensile fracture propagation and acoustic emission activity in sandstone: The effect of loading rate. Int J Rock Mech Min Sci, 2005, 42(7-8): 1094 doi: 10.1016/j.ijrmms.2005.05.011
|
[36] |
Walter W R, Brune J N. Spectra of seismic radiation from a tensile crack. J Geophys Res:Solid Earth, 1993, 98(B3): 4449 doi: 10.1029/92JB02414
|
[37] |
Madariaga R. Dynamics of an expanding circular fault. Bull Seismol Soc Am, 1976, 66(3): 639 doi: 10.1785/BSSA0660030639
|