Citation: | YANG Hao-qin, SHAN Zhong-de, LIU Feng, WANG Yi-fei. Microstructure analysis of freeze-cast A356 aluminum alloy[J]. Chinese Journal of Engineering, 2022, 44(8): 1331-1337. doi: 10.13374/j.issn2095-9389.2021.01.16.002 |
[1] |
Shan Z D, Qin S Y, Liu Q, et al. Key manufacturing technology & equipment for energy saving and emissions reduction in mechanical equipment industry. Int J Precis Eng Manuf, 2012, 13(7): 1095 doi: 10.1007/s12541-012-0143-y
|
[2] |
Torielli R M, Abrahams R A, Smillie R W, et al. Using lean methodologies for economically and environmentally sustainable foundries. China Foundry, 2011, 8(1): 74
|
[3] |
單忠德, 朱福先. 應用PCD 刀具銑削砂型的刀具磨損機理和預測模型. 機械工程學報, 2018, 54(17):124 doi: 10.3901/JME.2018.17.124
Shan Z D, Zhu F X. Wear mechanism and prediction model of polycrystalline diamond tool in milling sand mould. J Mech Eng, 2018, 54(17): 124 doi: 10.3901/JME.2018.17.124
|
[4] |
Liu L M, Shan Z D, Liu F, et al. High-quality manufacturing method of complicated castings based on multi-material hybrid moulding process. China Foundry, 2018, 15(5): 343 doi: 10.1007/s41230-018-8053-y
|
[5] |
Guo Z, Shan Z D, Liu F, et al. Experimental investigation on the performance and mesostructure of multi-material composite 3D-printed sand mold. Rapid Prototyp J, 2019, 26(2): 309 doi: 10.1108/RPJ-10-2018-0265
|
[6] |
Shan Z D, Guo Z, Du D, et al. Digital high-efficiency print forming method and device for multi-material casting molds. Front Mech Eng, 2020, 15(2): 328 doi: 10.1007/s11465-019-0574-6
|
[7] |
單忠德. 無模鑄造. 北京: 機械工業出版社, 2017
Shan Z D. Patternless Casting. Beijing: China Machine Press, 2017
|
[8] |
Shan Z D, Yang H Q, Liu F, et al. Performance of digital patternless freeze-casting sand mould. China Foundry, 2020, 17(4): 308 doi: 10.1007/s41230-020-9163-x
|
[9] |
Yang H Q, Shan Z D, Wang Y F, et al. Simulation of temperature field of A356 aluminum alloy in freeze casting // 4th International Conference on Fluid Mechanics and Industrial Applications. Taiyuan, 2020, 1600(1): 012045
|
[10] |
楊浩秦. 數字化無模冷凍鑄造成形機理研究 [學位論文]. 北京: 機械科學研究總院, 2020
Yang H Q. Study on Forming Mechanism of Digital Patternless Freezing Casting [Dissertation]. Beijing: China Academy of Machinery Science and Technology, 2020
|
[11] |
郭莉軍, 單忠德, 劉麗敏, 等. 型砂材質與擠壓成形工藝對砂型表面性能的影響. 工程科學學報, 2021, 43(2):273
Guo L J, Shan Z D, Liu L M, et al. Effect of sand-mold material and extrusion forming process on sand-mold surface properties. Chin J Eng, 2021, 43(2): 273
|
[12] |
單忠德, 楊浩秦, 劉豐, 等. 數字化無模冷凍鑄造成形方法研究. 稀有金屬材料與工程, 2020, 49(12):4321
Shan Z D, Yang H Q, Liu F, et al. Research on forming method of digital patternless freezing casting. Rare Met Mater Eng, 2020, 49(12): 4321
|
[13] |
Zhang J, Zhang D Q, Wu P W, et al. Numerical simulation research of investment casting for TiB2/ A356 aluminum base composite. Rare Met Meter Eng, 2014, 43(1): 47 doi: 10.1016/S1875-5372(14)60050-3
|
[14] |
Samuel E, Golbahar B, Samuel A M, et al. Effect of grain refiner on the tensile and impact properties of Al−Si−Mg cast alloys. Mater Des (1980—2015), 2014, 56: 468
|
[15] |
Jones H. Cooling rates during rapid solidification from a chill surface. Mater Lett, 1996, 26(3): 133 doi: 10.1016/0167-577X(95)00213-8
|
[16] |
賈麗敏, 徐達鳴, 郭景杰, 等. 離心鑄造TC4合金冷速對其組織和力學性能的影響. 中國有色金屬學報, 2010, 20(4):667
Jia L M, Xu D M, Guo J J, et al. Effect of cooling rate on structure and tensile strength of centrifugally cast TC4 alloy in ceramic-shell mold. Chin J Nonferrous Met, 2010, 20(4): 667
|
[17] |
Chen Z W, Lei Y M, Zhang H F. Structure and properties of nanostructured A357 alloy produced by melt spinning compared with direct chill ingot. J Alloys Compd, 2011, 509(27): 7473 doi: 10.1016/j.jallcom.2011.04.082
|
[18] |
李曉燕, 盧雅琳, 王健, 等. 稀土Er對A356鋁合金微觀組織和力學性能的影響. 材料工程, 2018, 46(1):67 doi: 10.11868/j.issn.1001-4381.2016.001066
Li X Y, Lu Y L, Wang J, et al. Effect of rare earth erbium on microstructure and mechanical properties of A356 aluminum alloy. J Mater Eng, 2018, 46(1): 67 doi: 10.11868/j.issn.1001-4381.2016.001066
|
[19] |
Kobayashi T. Strength and fracture of aluminum alloy. Mater Sci Eng:A, 2000, 280(1): 8 doi: 10.1016/S0921-5093(99)00649-8
|
[20] |
Jiang W M, Fan Z T, Liu D J. Microstructure, tensile properties and fractography of A356 alloy under as-cast and T6 obtained with expendable pattern shell casting process. Trans Nonferrous Met Soc China, 2012, 22(Suppl 1): s7
|
[21] |
王正軍, 司乃潮, 王俊, 等. 動態復合細化變質對A356鋁合金顯微組織的影響. 材料工程, 2017, 45(1):20 doi: 10.11868/j.issn.1001-4381.2015.000077
Wang Z J, Si N C, Wang J, et al. Effect of dynamic composite refinement and modification on microstructure of A356 aluminum alloy. J Mater Eng, 2017, 45(1): 20 doi: 10.11868/j.issn.1001-4381.2015.000077
|
[22] |
王長海, 倪紅軍, 孫寶德, 等. 鋁熔體除氫技術的進展. 鑄造, 2001, 50(4):179 doi: 10.3321/j.issn:1001-4977.2001.04.001
Wang C H, Ni H J, Sun B D, et al. Development in method and technology of aluminum melt hydrogen-removal. Foundry, 2001, 50(4): 179 doi: 10.3321/j.issn:1001-4977.2001.04.001
|
[23] |
Menargues S, Martín E, Baile M T, et al. New short T6 heat treatments for aluminium silicon alloys obtained by semisolid forming. Mater Sci Eng:A, 2015, 621: 236 doi: 10.1016/j.msea.2014.10.078
|
[24] |
Wang H P, Yao W J, Wei B. Remarkable solute trapping within rapidly growing dendrites. Appl Phys Lett, 2006, 89(20): 201905 doi: 10.1063/1.2387971
|
[25] |
王韜濤. 鋁合金顯微氣孔演化數值模擬及其軟件開發[學位論文]. 南京: 東南大學, 2016
Wang T T. Numerical Modeling and Simulation Software Development of Microporosity Eveolution in Aluminum Alloy [Dissertation ]. Nanjing: Southeast University, 2016
|
[26] |
Liao H C, Wu Y N, Ding K. Hardening response and precipitation behavior of Al–7%Si–0.3%Mg alloy in a pre-aging process. Mater Sci Eng: A, 2013, 560: 811
|