<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
XU Yan-rui, BAN Xiao-juan, WANG Xiao-kun, WANG Yu, YIN Dou, ZHOU Jing, HUANG Hou-bin, ZHU Zhi-hong. Simulations of silicone oil filling for use in retinal detachment surgery[J]. Chinese Journal of Engineering, 2021, 43(9): 1233-1243. doi: 10.13374/j.issn2095-9389.2021.01.13.006
Citation: XU Yan-rui, BAN Xiao-juan, WANG Xiao-kun, WANG Yu, YIN Dou, ZHOU Jing, HUANG Hou-bin, ZHU Zhi-hong. Simulations of silicone oil filling for use in retinal detachment surgery[J]. Chinese Journal of Engineering, 2021, 43(9): 1233-1243. doi: 10.13374/j.issn2095-9389.2021.01.13.006

Simulations of silicone oil filling for use in retinal detachment surgery

doi: 10.13374/j.issn2095-9389.2021.01.13.006
More Information
  • Corresponding author: E-mail: wangxiaokun@ustb.edu.cn
  • Received Date: 2021-01-13
    Available Online: 2021-09-06
  • Publish Date: 2021-09-18
  • With advancements in modern medical technology, the treatment of rhegmatogenous retinal detachment has been receiving increasing attention. Globally, vitrectomy combined with intraocular silicone oil tamponade has been widely used for rhegmatogenous retinal detachment, and the surgical equipment and technology required are increasingly advanced. In such an operation, it is crucial to understand how to achieve the best therapeutic effect with the minimum amount of silicone oil tamponade so as to reduce surgical complications. Traditional medical methods cannot effectively evaluate the effect of different silicone oil dosages on retinal hole attachment. Aiming at this concern, the current study proposed a silicone oil tamponade simulation method for retinal detachment surgery. Based on physical modeling and computer numerical discretization techniques, the intraocular force and silicone oil filling state were analyzed. Three-dimensional modeling and simulation of the silicone tamponade process were then conducted and visualized to help with medical decision-making. First, the human eyeball and surgical instruments were modeled and sampled to simulate the eyeball state during the operation. Second, based on differences in density, viscosity coefficient, and surface tension between water and silicone oil, the two-phase flow and water?silicone oil interaction were simulated. Finally, the solid?liquid interaction model was constructed to assess the movement and injection process of multiphase liquid in the eyeball. The experimental results show that this method can well present the interaction effect of multiphase fluid movement in the eyeball; understand effects such as surface tension, solid–liquid coupling, liquid stratification, and connector effect; and realize the simulation of the silicone oil injection and water drainage processes through the catheter in the intraocular cavity, which provides an effective way to predict the intraocular state after silicone oil filling and assists doctors in the field of operation process planning and effect prediction.

     

  • loading
  • [1]
    Liao L, Zhu X H. Advances in the treatment of rhegmatogenous retinal detachment. Int J Ophthalmol, 2019, 12(4): 660
    [2]
    Kawaguchi M. Silicone oil emulsions stabilized by polymers and solid particles. Adv Colloid Interface Sci, 2016, 233: 186 doi: 10.1016/j.cis.2015.06.005
    [3]
    Moussa K, Leng T, Oatts J T, et al. Manual removal of intraocular lens silicone oil droplets and dystrophic calcifications using a nitinol loop: A case series. Ophthalmic Surg Lasers Imaging Retina, 2017, 48(5): 422 doi: 10.3928/23258160-20170428-09
    [4]
    Barca F, Caporossi T, Rizzo S. Silicone oil: Different physical proprieties and clinical applications. Biomed Res Int, 2014, 2014: 502143
    [5]
    Scott M N, Weng C Y. The evolution of pars plana vitrectomy to 27-G microincision vitrectomy surgery. Int Ophthalmol Clin, 2016, 56(4): 97 doi: 10.1097/IIO.0000000000000131
    [6]
    Kuhn F, Aylward B. Rhegmatogenous retinal detachment: A reappraisal of its pathophysiology and treatment. Ophthalmic Res, 2014, 51(1): 15 doi: 10.1159/000355077
    [7]
    關禹博, 陳偉, 謝世勇. 累及黃斑的孔源性視網膜脫離硅油取出手術前后黃斑區光相干斷層掃描圖像特征分析. 中華眼底病雜志, 2016(3):291 doi: 10.3760/cma.j.issn.1005-1015.2016.03.015

    Guan Y B, Chen W, Xie S Y. Characteristics of macular optical coherence tomography changes before and after silicone oil removal in patients with rhegmatogenous retinal detachment involving the macular area. Chin J Ocul Fundus Dis, 2016(3): 291 doi: 10.3760/cma.j.issn.1005-1015.2016.03.015
    [8]
    李敏, 趙昕, 藍倩倩, 等. 重硅油填充治療下方裂孔源性視網膜脫離的臨床研究. 臨床眼科雜志, 2010, 18(5):404 doi: 10.3969/j.issn.1006-8422.2010.05.007

    Li M, Zhao X, Lan Q Q, et al. Clinical research of complicated retinal detachment with inferior breaks using a heavy silicon oil as temporary tamponade. J Clin Ophthalmol, 2010, 18(5): 404 doi: 10.3969/j.issn.1006-8422.2010.05.007
    [9]
    Odrobina D, Go??biewska J, Maroszyńska I. Choroidal thickness changes after vitrectomy with silicone oil tamponade for proliferative vitreoretinopathy retinal detachment. Retina (Phila Pa), 2017, 37(11): 2124 doi: 10.1097/IAE.0000000000001437
    [10]
    Roca J A, Wu L, Berrocal M, et al. Un-explained visual loss following silicone oil removal: results of the Pan American Collaborative Retina Study (PACORES) Group. Int J Retina Vitreous, 2017, 3: 26 doi: 10.1186/s40942-017-0079-6
    [11]
    童何俊, 付冬梅. 基于參考模型的視網膜特征量化. 工程科學學報, 2019, 41(9):1222

    Tong H J, Fu D M. Retinal feature quantization method based on a reference model. Chin J Eng, 2019, 41(9): 1222
    [12]
    馬博淵, 姜淑芳, 尹豆, 等. 圖像分割評估方法在顯微圖像分析中的應用. 工程科學學報, 2021, 43(1):137

    Ma B Y, Jiang S F, Yin D, et al. Image segmentation metric and its application in the analysis of microscopic image. Chin J Eng, 2021, 43(1): 137
    [13]
    Desbrun M, Gascuel M P. Smoothed particles: A new paradigm for animating highly deformable bodies. Comput Animat Simul 96, 1996: 61
    [14]
    Becker M, Teschner M. Weakly compressible SPH for free surface flows//Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, San Diego, 2007: 209
    [15]
    Solenthaler B, Pajarola R. Predictive-corrective incompressible SPH. ACM Trans Graph, 2009, 28(3): 1
    [16]
    Ihmsen M, Cornelis J, Solenthaler B, et al. Implicit incompressible SPH. IEEE Trans Vis Comput Graph, 2014, 20(3): 426 doi: 10.1109/TVCG.2013.105
    [17]
    Monaghan J J, Kajtar J B. SPH particle boundary forces for arbitrary boundaries. Comput Phys Commun, 2009, 180(10): 1811 doi: 10.1016/j.cpc.2009.05.008
    [18]
    Becker M, Tessendorf H, Teschner M. Direct forcing for Lagrangian rigid-fluid coupling. IEEE Trans Vis Comput Graph, 2009, 15(3): 493 doi: 10.1109/TVCG.2008.107
    [19]
    Harada T, Koshizuka S, Kawaguchi Y. Smoothed Particle Hydrodynamics on GPUs. Structure, 2007, 4(4): 671
    [20]
    Akinci N, Ihmsen M, Akinci G, et al. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans Graph, 2012, 31(4): 1
    [21]
    Macklin M, Müller M, Chentanez N, et al. Unified particle physics for real-time applications. ACM Trans Graph, 2014, 33(4): 1
    [22]
    Müller M, Solenthaler B, Keiser R, et al. Particle-based fluid-fluid interaction//Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York, 2005: 237
    [23]
    Ren B, Li C F, Yan X, et al. Multiple-fluid SPH simulation using a mixture model. ACM Trans Graph, 2014, 33(5): 1
    [24]
    Yan X, Jiang Y T, Li C F, et al. Multiphase SPH simulation for interactive fluids and solids. ACM Trans Graph, 2016, 35(4): 1
    [25]
    Lin W C. Boundary handling and porous flow for fluid-hair interactions. Comput Graph, 2015, 52: 33 doi: 10.1016/j.cag.2015.06.005
    [26]
    Nielsen M B, ?sterby O. A two-continua approach to Eulerian simulation of water spray. ACM Trans Graph, 2013, 32(4): 1
    [27]
    Wang X K, Ban X J, Liu S N, et al. Small-scale surface details simulation using divergence-free SPH. J Vis Lang Comput, 2018, 48: 91 doi: 10.1016/j.jvlc.2018.07.005
    [28]
    Koschier D, Bender J, Solenthaler B, et al. Smoothed particle hydrodynamics techniques for the physics based simulation of fluids and solids[J/OL]. arXiv preprint (2020-9-15) [2021-6-23]. https://arxiv.org/abs/2009.06944.
    [29]
    Solenthaler B, Pajarola R. Density contrast SPH interfaces//Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville, Switzerland: Eurographics Association, 2008: 211
    [30]
    Akinci N, Akinci G, Teschner M. Versatile surface tension and adhesion for SPH fluids. ACM Trans Graph, 2013, 32(6): 1
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)

    Article views (952) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频