Citation: | JIANG Da-guang, LI Ming-ming, CHEN Yu-zhong, DING Wen-da, PENG Xiao-ting, LI Rui-rui. Cascaded retinal vessel segmentation network guided by a skeleton map[J]. Chinese Journal of Engineering, 2021, 43(9): 1244-1252. doi: 10.13374/j.issn2095-9389.2021.01.13.005 |
[1] |
叢明, 吳童, 劉冬, 等. 基于監督學習的前列腺MR/TRUS圖像分割和配準方法. 工程科學學報, 2020, 42(10):1362
Cong M, Wu T, Liu D, et al. Prostate MR/TRUS image segmentation and registration methods based on supervised learning. Chin J Eng, 2020, 42(10): 1362
|
[2] |
馬博淵, 姜淑芳, 尹豆, 等. 圖像分割評估方法在顯微圖像分析中的應用. 工程科學學報, 2021, 43(1):137
Ma B Y, Jiang S F, Yin D, et al. Image segmentation metric and its application in the analysis of microscopic image. Chin J Eng, 2021, 43(1): 137
|
[3] |
Tso M O M, Jampol L M. Pathophysiology of hypertensive retinopathy. Ophthalmology, 1982, 89(10): 1132 doi: 10.1016/S0161-6420(82)34663-1
|
[4] |
Yu S, Xiao D, Kanagasingam Y. Machine learning based automatic neovascularization detection on optic disc region. IEEE J Biomed Heal Inform, 2018, 22(3): 886 doi: 10.1109/JBHI.2017.2710201
|
[5] |
Becker C, Rigamonti R, Lepetit V, et al. Supervised feature learning for curvilinear structure segmentation // International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, 2013: 526
|
[6] |
Tolias Y A, Panas S M. A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Trans Med Imaging, 1998, 17(2): 263 doi: 10.1109/42.700738
|
[7] |
Soares J V B, Leandro J J G, Cesar R M, et al. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging, 2006, 25(9): 1214 doi: 10.1109/TMI.2006.879967
|
[8] |
Sebbe R, Gosselin B, Coche E, et al. Segmentation of opacified thorax vessels using model-driven active contour // 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. Shanghai, 2006: 2535
|
[9] |
Pal S, Chatterjee S, Dey D, et al. Morphological operations with iterative rotation of structuring elements for segmentation of retinal vessel structures. Multidimens Syst Signal Process, 2019, 30(1): 373 doi: 10.1007/s11045-018-0561-9
|
[10] |
Chang C C, Lin C C, Pai P Y, et al. A novel retinal blood vessel segmentation method based on line operator and edge detector // 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Kyoto, 2009: 299
|
[11] |
Zhang Y S, Chung A C S. Deep supervision with additional labels for retinal vessel segmentation task // International Conference on Medical Image Computing and Computer-Assisted Intervention. Granada, 2018: 83
|
[12] |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation // International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, 2015: 234
|
[13] |
Guo C L, Szemenyei M, Hu H, et al. Channel attention residual U-Net for retinal vessel segmentation [J/OL]. arXiv preprint (2020-10-20) [2021-6-10]. https://arxiv.org/abs/2004.03702
|
[14] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 770
|
[15] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// Proceedings of the 31st Conference on neural information processing systems (NIPS 2017). Long Beach, 2017: 5998
|
[16] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132
|
[17] |
Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions //Proceedings of the 4th International Conference on Learning Representations. San Juan, 2016
|
[18] |
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell, 2018, 40(4): 834 doi: 10.1109/TPAMI.2017.2699184
|
[19] |
Chen L C, Szemenyei M, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J/OL]. arXiv preprint (2017-12-5) [2021-6-10].https://arxiv.org/abs/1706.05587
|
[20] |
Chen L C, Papandreou G, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation // Computer Vision – ECCV 2018. Munich, 2018: 833
|
[21] |
Song H M, Wang W G, Zhao S Y, et al. Pyramid dilated deeper ConvLSTM for video salient object detection // Computer Vision – ECCV 2018. Munich, 2018: 744
|
[22] |
Xie S N, Tu Z W. Holistically-nested edge detection // 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, 2015: 1395
|
[23] |
Orlando J I, Blaschko M. Learning fully-connected CRFs for blood vessel segmentation in retinal images // International Conference on Medical Image Computing and Computer-Assisted Intervention. Boston, 2014: 634
|
[24] |
Ricci E, Perfetti R. Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging, 2007, 26(10): 1357 doi: 10.1109/TMI.2007.898551
|
[25] |
Ganin Y, Lempitsky V. N4-fields: Neural network nearest neighbor fields for image transforms // Asian Conference on Computer Vision. Singapore, 2015: 536
|
[26] |
Dollár P, Zitnick C L. Structured forests for fast edge detection // 2013 IEEE International Conference on Computer Vision. Sydney, 2013: 1841
|
[27] |
Maninis K K, Pont-Tuset J, Arbeláez P, et al. Deep retinal image understanding // Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Athens, 2016: 140
|
[28] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition //Proceedings of the 3th International Conference on Learning Representations. San Diego, 2015
|
[29] |
Zhang S H, Fu H Z, Yan Y G, et al. Attention guided network for retinal image segmentation // Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Shenzhen, 2019: 797
|
[30] |
Guo C L, Szemenyei M, Yi Y G, et al. SA-UNet: spatial attention U-net for retinal vessel segmentation [J/OL]. arXiv preprint (2020-10-20) [2021-6-10]. https://arxiv.org/abs/2004.03696
|
[31] |
Mou L, Zhao Y T, Chen L, et al. CS-net: Channel and spatial attention network for curvilinear structure segmentation // Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Shenzhen, 2019: 721
|
[32] |
Jiang Y, Tan N, Peng T T, et al. Retinal vessels segmentation based on dilated multi-scale convolutional neural network. IEEE Access, 2019, 7: 76342 doi: 10.1109/ACCESS.2019.2922365
|
[33] |
Hatamizadeh A, Hosseini H, Liu Z Y, et al. Deep dilated convolutional nets for the automatic segmentation of retinal vessels[J/OL]. arXiv preprint (2019-7-21) [2021-6-10]. https://arxiv.org/abs/1905.12120
|
[34] |
Gu Z, Cheng J, Fu H, et al. CE-net: Context encoder network for 2D medical image segmentation. IEEE Trans Med Imaging, 2019, 38(10): 2281 doi: 10.1109/TMI.2019.2903562
|
[35] |
Mo J, Zhang L. Multi-level deep supervised networks for retinal vessel segmentation. Int J Comput Assist Radiol Surg, 2017, 12(12): 2181 doi: 10.1007/s11548-017-1619-0
|
[36] |
Hu K, Zhang Z Z, Niu X R, et al. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing, 2018, 309: 179 doi: 10.1016/j.neucom.2018.05.011
|
[37] |
Yan Z Q, Yang X, Cheng K T. Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans Biomed Eng, 2018, 65(9): 1912 doi: 10.1109/TBME.2018.2828137
|
[38] |
Zhang Z J, Fu H Z, Dai H, et al. ET-net: A generic edge-aTtention guidance network for medical image segmentation // Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Shenzhen, 2019: 442
|
[39] |
Kang H, Gao Y Q, Guo S, et al. AVNet: A retinal artery/vein classification network with category-attention weighted fusion. Comput Methods Programs Biomed, 2020, 195: 105629 doi: 10.1016/j.cmpb.2020.105629
|
[40] |
Zhang S H, Fu H Z, Xu Y W, et al. Retinal image segmentation with a structure-texture demixing network // Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. Lima, 2020: 765
|
[41] |
Zheng S M, Zhang T Y, Zhuang J W, et al. A two-stream meticulous processing network for retinal vessel segmentation[J/OL]. arXiv preprint (2020-1-15) [2021-6-10]. https://arxiv.org/abs/2001.05829
|
[42] |
Zou B J, Dai Y L, He Q, et al. Multi-label classification scheme based on local regression for retinal vessel segmentation. IEEE/ACM Trans Comput Biol Bioinform, 2020, PP(99): 1
|
[43] |
Zhang T Y, Suen C Y. A fast parallel algorithm for thinning digital patterns. Commun ACM, 1984, 27(3): 236 doi: 10.1145/357994.358023
|
[44] |
Hakim L, Yudistira N, Kavitha M, et al. U-net with graph based smoothing regularizer for small vessel segmentation on fundus image // Proceedings of the 26th International Conference on Neural Information Processing. Sydney, 2019: 515
|
[45] |
Oktay O, Schlemper J, Folgoc L L, et al. Attention U-net: Learning where to look for the pancreas. 2018[J/OL]. arXiv preprint (2018-5-20) [2021-6-10]. https://arxiv.org/abs/1804.03999
|
[46] |
Li L Z, Verma M, Nakashima Y, et al. IterNet: retinal image segmentation utilizing structural redundancy in vessel networks // 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Snowmass, 2020: 3645
|
[47] |
Jin Q G, Meng Z P, Pham T D, et al. DUNet: A deformable network for retinal vessel segmentation. Knowl Based Syst, 2019, 178: 149 doi: 10.1016/j.knosys.2019.04.025
|
[48] |
Wang B, Qiu S, He H G. Dual encoding U-net for retinal vessel segmentation // Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Shenzhen, 2019: 84
|
[49] |
Wang X H, Jiang X D, Ren J F. Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recognit, 2019, 88: 331 doi: 10.1016/j.patcog.2018.11.030
|
[50] |
Niemeijer M, Staal J, van Ginneken B, et al. Comparative study of retinal vessel segmentation methods on a new publicly available database // Proceedings of SPIE‒The International Society for Optical Engineering, 2004, 5370 I: 648
|
[51] |
Hoover A D, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging, 2000, 19(3): 203 doi: 10.1109/42.845178
|
[52] |
Owen C G, Rudnicka A R, Mullen R, et al. Measuring retinal vessel tortuosity in 10-year-old children: Validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest Ophthalmol Vis Sci, 2009, 50(5): 2004 doi: 10.1167/iovs.08-3018
|