Citation: | XU Yue-fan, XIAO Wen-dong, CAO Zheng-tao. Ensemble extreme learning machine approach for heartbeat classification by fusing 1d convolutional and handcrafted features[J]. Chinese Journal of Engineering, 2021, 43(9): 1224-1232. doi: 10.13374/j.issn2095-9389.2021.01.12.005 |
[1] |
Thaler M S. The Only EKG Book You’ll Ever Need. 9th Ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2017[2] Gawlowska J, Wranicz J K, Norman J. “Jeff ” Holter (1914—1983). Cardiol J, 2009, 16(4): 386
|
[2] |
Chazal P d, Reilly R B. A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng, 2006, 53(12): 2535 doi: 10.1109/TBME.2006.883802
|
[3] |
Mondéjar-Guerra V, Novo J, Rouco J, et al. Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. Biomed Signal Process Control, 2019, 47: 41 doi: 10.1016/j.bspc.2018.08.007
|
[4] |
Chazal P d, O'Dwyer M, Reilly R B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng, 2004, 51(7): 1196 doi: 10.1109/TBME.2004.827359
|
[5] |
Tuncer T, Dogan S, P?awiak P, et al. Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowl Based Syst, 2019, 186: 104923 doi: 10.1016/j.knosys.2019.104923
|
[6] |
Sahoo S, Kanungo B, Behera S, et al. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement, 2017, 108: 55 doi: 10.1016/j.measurement.2017.05.022
|
[7] |
Afkhami R G, Azarnia G, Tinati M A. Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recognit Lett, 2016, 70: 45 doi: 10.1016/j.patrec.2015.11.018
|
[8] |
Marinho L B, Nascimento N M M, Souza J W M, et al. A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification. Future Gener Comput Syst, 2019, 97: 564 doi: 10.1016/j.future.2019.03.025
|
[9] |
Ye C, Vijaya Kumar B V K, Coimbra M T. Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans Biomed Eng, 2012, 59(10): 2930 doi: 10.1109/TBME.2012.2213253
|
[10] |
Castillo O, Melin P, Ramírez E, et al. Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system. Expert Syst Appl, 2012, 39(3): 2947 doi: 10.1016/j.eswa.2011.08.156
|
[11] |
Girshick R. Fast R?CNN // 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, 2015: 1440
|
[12] |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 2261
|
[13] |
He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1904 doi: 10.1109/TPAMI.2015.2389824
|
[14] |
Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 1
|
[15] |
Schroff F, Kalenichenko D, Philbin J. FaceNet: A unified embedding for face recognition and clustering // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 815
|
[16] |
Ding C X, Tao D C. Trunk-branch ensemble convolutional neural networks for video-based face recognition. IEEE Trans Pattern Anal Mach Intell, 2018, 40(4): 1002 doi: 10.1109/TPAMI.2017.2700390
|
[17] |
He R, Wu X, Sun Z N, et al. Wasserstein CNN: Learning invariant features for NIR-VIS face recognition. IEEE Trans Pattern Anal Mach Intell, 2019, 41(7): 1761 doi: 10.1109/TPAMI.2018.2842770
|
[18] |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640 doi: 10.1109/TPAMI.2016.2572683
|
[19] |
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86(11): 2278 doi: 10.1109/5.726791
|
[20] |
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70(1-3): 489 doi: 10.1016/j.neucom.2005.12.126
|
[21] |
Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw, 2006, 17(4): 879 doi: 10.1109/TNN.2006.875977
|
[22] |
Anthimopoulos M, Christodoulidis S, Ebner L, et al. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging, 2016, 35(5): 1207 doi: 10.1109/TMI.2016.2535865
|
[23] |
李江昀, 趙義凱, 薛卓爾, 等. 深度神經網絡模型壓縮綜述. 工程科學學報, 2019, 41(10):1229
Li J Y, Zhao Y K, Xue Z E, et al. A survey of model compression for deep neural networks. Chin J Eng, 2019, 41(10): 1229
|
[24] |
Ji S W, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell, 2013, 35(1): 221 doi: 10.1109/TPAMI.2012.59
|
[25] |
Bartlett P L. The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Trans Inf Theory, 1998, 44(2): 525 doi: 10.1109/18.661502
|
[26] |
PhysioNet. MIT−BIH Arrhythmias Database [J/OL]. PhysioNet Online (2020-04-15) [2021-01-12] https://physionet.org/files/mitdb/1.0.0
|
[27] |
Moody G B, Mark R G. The impact of the mit-bih arrhythmia database. IEEE Eng Med Biol Mag, 2001, 20(3): 45 doi: 10.1109/51.932724
|