Citation: | ZHANG Tao-hong, FAN Su-li, GUO Xu-xu, LI Qian-qian. Intelligent medical assistant diagnosis method based on data fusion[J]. Chinese Journal of Engineering, 2021, 43(9): 1197-1205. doi: 10.13374/j.issn2095-9389.2021.01.12.003 |
[1] |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86(11): 2278 doi: 10.1109/5.726791
|
[2] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84 doi: 10.1145/3065386
|
[3] |
Deng J, Dong W, Socher R, et al. ImageNet: A large-scale hierarchical image database // 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, 2009: 248
|
[4] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [J/OL]. ArXiv Preprint (2014-09-04) [2021-01-12]. https://arxiv.org/abs/1409.1556
|
[5] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 770
|
[6] |
Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 1
|
[7] |
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [J/OL]. ArXiv Preprint (2015-02-11) [2021-01-12]. https://arxiv.org/abs/1502.03167
|
[8] |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 2818
|
[9] |
Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning [J/OL]. ArXiv Preprint (2016-02-24) [2021-01-12]. https://arxiv.org/abs/1602.07261
|
[10] |
Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size [J/OL]. ArXiv Preprint (2016-02-24) [2021-01-12]. https://arxiv.org/abs/1602.07360
|
[11] |
Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications [J/OL]. ArXiv Preprint (2016-02-24) [2021-01-12]. https://arxiv.org/abs/1704.04861v1
|
[12] |
Zhang X Y, Zhou X Y, Lin M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 6848
|
[13] |
Sandler M, Howard A, Zhu M L, et al. MobileNetV2: inverted residuals and linear bottlenecks// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 4510
|
[14] |
Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design // 2018 European Conference on Computer Vision (ECCV). Munich, 2018: 122
|
[15] |
Howard A, Sandler M, Chen B, et al. Searching for MobileNetV3//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, 2019: 1314
|
[16] |
Li L, Xu M, Liu H R, et al. A large-scale database and a CNN model for attention-based glaucoma detection. IEEE Trans Med Imaging, 2020, 39(2): 413 doi: 10.1109/TMI.2019.2927226
|
[17] |
Yang H, Kim J Y, Kim H, et al. Guided soft attention network for classification of breast cancer histopathology images. IEEE Trans Med Imaging, 2020, 39(5): 1306 doi: 10.1109/TMI.2019.2948026
|
[18] |
Xu X Y, Wang C D, Guo J X, et al. MSCS-DeepLN: Evaluating lung nodule malignancy using multi-scale cost-sensitive neural networks. Med Image Anal, 2020, 65: 101772 doi: 10.1016/j.media.2020.101772
|
[19] |
Mobiny A, Lu H Y, Nguyen H V, et al. Automated classification of apoptosis in phase contrast microscopy using capsule network. IEEE Trans Med Imaging, 2020, 39(1): 1 doi: 10.1109/TMI.2019.2918181
|
[20] |
Zhou Y, Li G Q, Li H Q. Automatic cataract classification using deep neural network with discrete state transition. IEEE Trans Med Imaging, 2020, 39(2): 436 doi: 10.1109/TMI.2019.2928229
|
[21] |
Wang Y, Wang N, Xu M, et al. Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound. IEEE Trans Med Imaging, 2020, 39(4): 866 doi: 10.1109/TMI.2019.2936500
|
[22] |
Liu T J, Guo Q Q, Lian C F, et al. Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks. Med Image Anal, 2019, 58: 101555 doi: 10.1016/j.media.2019.101555
|
[23] |
姚超, 趙基淮, 馬博淵, 等. 基于深度學習的宮頸癌異常細胞快速檢測方法. 工程科學學報, https://doi.org/10.13374/j.issn2095-9389.2021.01.12.001
Yao C, Zhao J Z, Ma B Y, et al. Fast detection method for cervical cancer abnormal cells based on deep learning. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2021.01.12.001
|
[24] |
Zeng Y W, Liu X K, Xiao N, et al. Automatic diagnosis based on spatial information fusion feature for intracranial aneurysm. IEEE Trans Med Imaging, 2020, 39(5): 1448 doi: 10.1109/TMI.2019.2951439
|
[25] |
Wang L T, Zhang L, Zhu M J, et al. Automatic diagnosis for thyroid nodules in ultrasound images by deep neural networks. Med Image Anal, 2020, 61: 101665 doi: 10.1016/j.media.2020.101665
|
[26] |
Kumar A, Fulham M, Feng D G, et al. Co-learning feature fusion maps from PET?CT images of lung cancer. IEEE Trans Med Imaging, 2020, 39(1): 204 doi: 10.1109/TMI.2019.2923601
|
[27] |
Joyseeree R, Otálora S, Müller H, et al. Fusing learned representations from Riesz filters and deep CNN for lung tissue classification. Med Image Anal, 2019, 56: 172 doi: 10.1016/j.media.2019.06.006
|
[28] |
Kingma D, Ba J. Adam: A method for stochastic optimization[J/OL]. ArXiv Preprint (2014-12-22) [2021-01-12]. https://arxiv.org/abs/1412.6980
|
[29] |
Bio. Heart Disease UCI [J/OL ]. Kaggle (2018-06-25) [2021-01-12]. https://www.kaggle.com/ronitf/heart-disease-uci
|
[30] |
Società Italiana di Radiologia Medica e Interventistica. Covid−19 Database[J/OL]. Database Online (2020-03-18) [2021-01-12]. https://www.sirm.org/category/senza-categoria/covid-19
|
[31] |
Zhao J, Zhang Y, He X, et al. COVID−CT−Dataset: A CT scan dataset about COVID−19[J/OL]. ArXiv Preprint (2020-03-30) [2021-01-12]. https://github.com/UCSD-AI4H/COVID-CT
|