Citation: | YIN Xiang, MA Bo-yuan, BAN Xiao-juan, HUANG Hai-you, WANG Yu, LI Song-yan. Defocus spread effect elimination method in multiple multi-focus image fusion for microscopic images[J]. Chinese Journal of Engineering, 2021, 43(9): 1174-1181. doi: 10.13374/j.issn2095-9389.2021.01.12.002 |
[1] |
Liu Y, Wang L, Cheng J, et al. Multi-focus image fusion: A Survey of the state of the art. Inf Fusion, 2020, 64: 71 doi: 10.1016/j.inffus.2020.06.013
|
[2] |
Szeliski R. Computer vision: Algorithms and Applications. London: Springer, 2011
|
[3] |
章毓晉. 圖像工程. 4版. 北京: 清華大學出版社, 2018
Zhang Y J. Image Engineering. 4th ed. Beijing: Tsinghua University Press, 2018
|
[4] |
Burt P, Adelson E. The Laplacian pyramid as a compact image code. IEEE Trans Commun, 1983, 31(4): 532 doi: 10.1109/TCOM.1983.1095851
|
[5] |
Toet A. Image fusion by a ratio of low-pass pyramid. Pattern Recognit Lett, 1989, 9(4): 245 doi: 10.1016/0167-8655(89)90003-2
|
[6] |
Li H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform. Graph Models Image Process, 1995, 57(3): 235 doi: 10.1006/gmip.1995.1022
|
[7] |
Li S T, Kwok J T, Wang Y N. Combination of images with diverse focuses using the spatial frequency. Inf Fusion, 2001, 2(3): 169 doi: 10.1016/S1566-2535(01)00038-0
|
[8] |
Li S T, Kang X D, Hu J W. Image fusion with guided filtering. IEEE Trans Image Process, 2013, 22(7): 2864 doi: 10.1109/TIP.2013.2244222
|
[9] |
Zhou Z Q, Li S, Wang B. Multi-scale weighted gradient-based fusion for multi-focus images. Inf Fusion, 2014, 20: 60 doi: 10.1016/j.inffus.2013.11.005
|
[10] |
Liu Y, Liu S P, Wang Z F. Multi-focus image fusion with dense SIFT. Inf Fusion, 2015, 23: 139 doi: 10.1016/j.inffus.2014.05.004
|
[11] |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436 doi: 10.1038/nature14539
|
[12] |
Liu Y, Chen X, Peng H, et al. Multi-focus image fusion with a deep convolutional neural network. Inf Fusion, 2017, 36: 191 doi: 10.1016/j.inffus.2016.12.001
|
[13] |
Ma, B Y, Zhu Y, Yin X, et al. SESF?Fuse: An unsupervised deep model for multi-focus image fusion. Neural Comput Appl, 2021, 33: 5793 doi: 10.1007/s00521-020-05358-9
|
[14] |
Xu H, Ma J Y, Jiang J J, et al. U2Fusion: A unified unsupervised image fusion network. IEEE Trans Pattern Anal Mach Intell, 10.1109/TPAMI.2020.3012548
|
[15] |
Prabhakar K R, Srikar V S, Babu R V. DeepFuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs// IEEE International Conference on Computer Vision. Venice, 2017: 4724
|
[16] |
Ma B Y, Yin X, Wu D, et al. Gradient Aware Cascade Network for Multi-Focus Image Fusion[J/OL]. ArXiv Preprint (2020-10-01) [2021-01-12]. https://arxiv.org/abs/2010.08751
|
[17] |
Xu H, Fan F, Zhang H, et al. A deep model for multi-focus image fusion based on gradients and connected regions. IEEE Access, 2020, 8: 26316 doi: 10.1109/ACCESS.2020.2971137
|
[18] |
Huang J, Le Z L, Ma Y, et al. A generative adversarial network with adaptive constraints for multi-focus image fusion. Neural Comput Appl, 2020, 32(18): 15119 doi: 10.1007/s00521-020-04863-1
|
[19] |
王鏢堡. 基于深度學習的多聚焦圖像算法研究[學位論文]. 昆明: 云南大學, 2018
Wang B B. Research on Multi-Focus Image Fusion Algorithm Based on Deep Learning [Dissertation]. Kunming: Yunnan University, 2018
|
[20] |
Ma H, Liao Q, Zhang J, et al. An α-Matte Boundary Defocus Model Based Cascaded Network for Multi-focus Image Fusion[J/OL]. ArXiv Preprint (2019-10-30) [2021-01-12]. https://arxiv.org/abs/1910.13136
|
[21] |
何凱, 魏穎, 王陽, 等. 一種改進的非剛性圖像配準算法. 工程科學學報, 2019, 41(7):955
He K, Wei Y, Wang Y, et al. An improved non-rigid image registration approach. Chin J Eng, 2019, 41(7): 955
|
[22] |
陳世偉, 張勝修, 楊小岡, 等. 基于橢圓對稱方向矩的可見光與紅外圖像配準算法. 工程科學學報, 2017, 39(7):1107
Chen S W, Zhang S X, Yang X G, et al. Registration of visual-infrared images based on ellipse symmetrical orientation moment. Chin J Eng, 2017, 39(7): 1107
|
[23] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132
|
[24] |
Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common Objects in Context. Computer Vision – ECCV 2014. Cham: Springer International Publishing, 2014
|
[25] |
馬博淵, 印象. SESF−Fuse的多聚焦圖像融合開源代碼[J/OL]. Github (2019-08-21) [2021-01-12]. https://github.com/Keep-Passion/SESF-Fuse
Ma B Y, Yin X. The Code of SESF−Fuse for multi-focus image fusion [J/OL]. Github (2019-08-21) [2021-01-12]. https://github.com/Keep-Passion/SESF-Fuse
|
[26] |
Kingma D, Ba J. Adam: A method for stochastic optimization[J/OL]. ArXiv Preprint (2017-01-30) [2021-01-12]. https://arxiv.org/abs/1412.6980
|
[27] |
Paszke A, Gross S, Massa F, et al. Py Torch: An imperative style, high-performance deep learning library[J/OL]. ArXiv Preprint (2019-12-3) [2021-01-12]. https://arxiv.org/abs/1912.01703
|
[28] |
毛星云. OpenCV3編程入門. 北京: 電子工業出版社, 2015
Mao X Y. Introduction to OpenCV3 Programming. Beijing: Electronics industry publishing house, 2015
|
[29] |
Xu S, Ji L Z, Wang Z, et al. Towards reducing severe defocus spread effects for multi-focus image fusion via an optimization based strategy. IEEE Trans Comput Imaging, 2020, 6: 1561 doi: 10.1109/TCI.2020.3039564
|