Citation: | YAO Chao, ZHAO Ji-huai, MA Bo-yuan, LI Li, MA Ying, BAN Xiao-juan, JIANG Shu-fang, SHAO Bing-heng. Fast detection method for cervical cancer abnormal cells based on deep learning[J]. Chinese Journal of Engineering, 2021, 43(9): 1140-1148. doi: 10.13374/j.issn2095-9389.2021.01.12.001 |
[1] |
馬丁, 奚玲. 宮頸癌專題討論——宮頸癌流行病學及病因學研究進展. 實用婦產科雜志, 2001, 17(2):61 doi: 10.3969/j.issn.1003-6946.2001.02.001
Ma D, Xi L. Special discussion on cervical cancer: Research Progress in epidemiology and etiology of cervical cancer. J Pract Obstet Gynecol, 2001, 17(2): 61 doi: 10.3969/j.issn.1003-6946.2001.02.001
|
[2] |
李聰聰, 朱莉. 宮頸癌的病因及宮頸癌疫苗現狀. 現代腫瘤醫學, 2018, 26(20):3333 doi: 10.3969/j.issn.1672-4992.2018.20.040
Li C C, Zhu L. The cause of cervical cancer and the status of cervical cancer vaccine. J Mod Oncol, 2018, 26(20): 3333 doi: 10.3969/j.issn.1672-4992.2018.20.040
|
[3] |
吳三春. 婦科普查對預防宮頸癌的意義. 中國醫藥指南, 2011, 9(27):91 doi: 10.3969/j.issn.1671-8194.2011.27.065
Wu S C. Significance of gynecological census in prevention of cervical cancer. Guide China Med, 2011, 9(27): 91 doi: 10.3969/j.issn.1671-8194.2011.27.065
|
[4] |
章文華, 李楠, 吳令英. 重視宮頸癌患者年輕化的趨勢. 浙江腫瘤, 2000, 6(2):112
Zhang W H, Li N, Wu L Y. Attention should be paid on the trend of carcinoma of the cervix in young women. Zhejiang Cancer J, 2000, 6(2): 112
|
[5] |
林泳秀. 宮頸癌的臨床病理特點與預后分析[學位論文]. 南寧: 廣西醫科大學, 2013
Lin Y X. Clinical Pathological Features and Prognosis Analysis of Cervical Cancer [Dissertation]. Nanning: Guangxi Medical University, 2013
|
[6] |
王力, 趙穩興, 趙璽龍, 等. 膜式和沉降式宮頸液基細胞學制片方法的比較研究. 解放軍醫藥雜志, 2011, 23(4):6 doi: 10.3969/j.issn.2095-140X.2011.04.003
Wang L, Zhao W X, Zhao X L, et al. A comparative study of two methods of smear-making: Membrane-based and sedimentation in liquid-based cervical cytology. Med Pharm J Chin People’s Liberation Army, 2011, 23(4): 6 doi: 10.3969/j.issn.2095-140X.2011.04.003
|
[7] |
趙澄泉, 周先榮, 隋龍, 等. 宮頸癌篩查及臨床處理(細胞學、組織學和陰道鏡學). 北京: 北京科學技術出版社, 2017
Zhao C Q, Zhou X R, Sui L, et al. Cervical Cancer Screening and Clinical Management (Cytology, Histology, Colposcopy). Beijing: Beijing Science and Technology Press, 2017
|
[8] |
魏麗惠. 陰道鏡及宮頸細胞病理學規范化培訓教材. 北京: 人民衛生出版社, 2020
Wei L H. Standardized Training Materials for Colposcopy and Cervical Cytopathology. Beijing: People’s Medical Publishing House, 2020
|
[9] |
王軼英, 王悅, 喬友林, 等. 中國宮頸癌篩查未來之路——細胞學初篩的棄或守. 中國實用婦科與產科雜志, 2017, 33(3):324
Wang Y Y, Wang Y, Qiao Y L, et al. The future of cervical cancer screening in China?Abandonment or conservation of cytological primary screening. Chin J Pract Gynecol Obstet, 2017, 33(3): 324
|
[10] |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436 doi: 10.1038/nature14539
|
[11] |
Szeliski R. Computer Vision. London: Springer London Press, 2011
|
[12] |
章毓晉. 圖像工程. 4版. 北京: 清華大學出版社, 2018
Zhang Y Z. Image Engineering. 4th Ed. Beijing: Tsinghua University Press, 2018
|
[13] |
史穎歡. 醫學圖像處理中的機器學習方法及其應用研究[學位論文]. 南京: 南京大學, 2013
Shi Y H. Study of Machine Learning Techniques and Applications in Med-Ical Image Analysis [Dissertation]. Nanjing: Nanjing University, 2013
|
[14] |
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533 doi: 10.1038/323533a0
|
[15] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 770
|
[16] |
蔡武斌. 癌細胞病理圖像的檢測技術研究[學位論文]. 太原: 中北大學, 2018
Cai W B. Study on Detection Techniques of Pathological Images of Cancer Cells [Dissertation]. Taiyuan: North University of China, 2018
|
[17] |
Kermany D S, Goldbaum M, Cai W J, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 2018, 172(5): 1122 doi: 10.1016/j.cell.2018.02.010
|
[18] |
叢明, 吳童, 劉冬, 等. 基于監督學習的前列腺MR/TRUS圖像分割和配準方法. 工程科學學報, 2020, 42(10):1362
Cong M, Wu T, Liu D, et al. Prostate MR/TRUS image segmentation and registration methods based on supervised learning. Chin J Eng, 2020, 42(10): 1362
|
[19] |
Zhang L, Le L, Nogues I, et al. DeepPap: deep convolutional networks for cervical cell classification. IEEE J Biomed Heal Inform, 2017, 21(6): 1633 doi: 10.1109/JBHI.2017.2705583
|
[20] |
Wu M, Yan C B, Liu H Q, et al. Automatic classification of cervical cancer from cytological images by using convolutional neural network. Biosci Rep, 2018, 38(6): BSR20181769 doi: 10.1042/BSR20181769
|
[21] |
Jia D Y, Li Z Y, Zhang C W. Detection of cervical cancer cells based on strong feature CNN-SVM network. Neurocomputing, 2020, 411: 112 doi: 10.1016/j.neucom.2020.06.006
|
[22] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137 doi: 10.1109/TPAMI.2016.2577031
|
[23] |
陳小槐. 子宮頸細胞學Bethesda報告系統(中文翻譯版, 原書第3版). 北京: 科學出版社, 2019
Chen X H. The Bethesda System for Reporting Cervical Cytology (Definitions, Criteria, and Explanatory Notes). 3rd Ed. Beijing: Science press, 2019
|
[24] |
賀又娥, 王友芳, 郎景和, 等. 計算機輔助細胞檢測系統配合陰道鏡檢查對子宮頸病變的診斷價值. 中華婦產科雜志, 1998, 33(5):265 doi: 10.3760/j.issn:0529-567X.1998.05.002
He Y E, Wang Y F, Lang J H, et al. The evaluation of computer cytological test with colposcopy for the diagnosis of cervical lesions. Chin J Obstet Gynecol, 1998, 33(5): 265 doi: 10.3760/j.issn:0529-567X.1998.05.002
|
[25] |
Stoler M H. Advances in cervical screening technology. Mod Pathol, 2000, 13(3): 275 doi: 10.1038/modpathol.3880048
|
[26] |
周立平. 宮頸涂片自動輔助判讀系統中相關圖像技術的研究[學位論文]. 青島: 中國海洋大學, 2009
Zhou L P. Cervical Smears Automatic Auxiliary System Related to Image Interpretation Techniques [Dissertation]. Qingdao: Ocean University of China, 2009
|
[27] |
鄭珂, 張聲, 唐堅清. 計算機輔助閱片系統在宮頸細胞學篩查中的應用. 診斷病理學雜志, 2015, 22(6):364 doi: 10.3969/j.issn.1007-8096.2015.06.013
Zheng K, Zhang S, Tang J Q. Application of Thinprep computer-assisted imaging system in cervical cytology. Chin J Diagn Pathol, 2015, 22(6): 364 doi: 10.3969/j.issn.1007-8096.2015.06.013
|
[28] |
Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context // Computer Vision – ECCV 2014. Zurich, 2014: 740
|
[29] |
Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning library[J/OL]. arXiv preprint (2019-12-3) [2021-6-24]. https://arxiv.org/abs/1912.01703
|
[30] |
毛星云, 冷雪飛. Opencv3編程入門. 北京: 電子工業出版社, 2015
Mao X Y, Leng X F. Introduction to Opencv3 programming. Beijing: Electronics industry publishing house, 2015
|
[31] |
Huang G, Liu Z, Pleiss G, et al. Convolutional networks with dense connectivity. IEEE Trans Pattern Anal Mach Intell, 2019, doi: 10.1109/TPAMI.2019.2918284
|
[32] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132
|
[33] |
Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks // International Conference on Machine Learning. Long Beach, 2019: 6105
|
[34] |
Xie S N, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 5987
|
[35] |
Zoph B, Vasudevan V, Shlens J, et al. Learning transferable architectures for scalable image recognition // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 8697
|
[36] |
Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design // Computer Vision – ECCV 2018. Munich, 2018: 122
|
[37] |
Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning // Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco, 2017(31): 1
|
[38] |
Chollet F. Xception: deep learning with depthwise separable convolutions // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 1800
|
[39] |
Cai Z W, Vasconcelos N. Cascade R-CNN: Delving into high quality object detection // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 6154
|
[40] |
Pang J M, Chen K, Shi J P, et al. Libra R-CNN: Towards balanced learning for object detection // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, 2019: 821
|
[41] |
Li Y H, Chen Y T, Wang N Y, et al. Scale-aware trident networks for object detection // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, 2019: 6053
|
[42] |
Kong T, Sun F C, Liu H P, et al. FoveaBox: beyound anchor-based object detection. IEEE Trans Image Process, 2020, 29: 7389 doi: 10.1109/TIP.2020.3002345
|
[43] |
Zhang S F, Chi C, Yao Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 9756
|
[44] |
Ultralytics. YoloV5[EB/OL]. Github(2020-10-12)[2021-06-24]. https://github.com/ultralytics/YoloV5
|