<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
YAO Chao, ZHAO Ji-huai, MA Bo-yuan, LI Li, MA Ying, BAN Xiao-juan, JIANG Shu-fang, SHAO Bing-heng. Fast detection method for cervical cancer abnormal cells based on deep learning[J]. Chinese Journal of Engineering, 2021, 43(9): 1140-1148. doi: 10.13374/j.issn2095-9389.2021.01.12.001
Citation: YAO Chao, ZHAO Ji-huai, MA Bo-yuan, LI Li, MA Ying, BAN Xiao-juan, JIANG Shu-fang, SHAO Bing-heng. Fast detection method for cervical cancer abnormal cells based on deep learning[J]. Chinese Journal of Engineering, 2021, 43(9): 1140-1148. doi: 10.13374/j.issn2095-9389.2021.01.12.001

Fast detection method for cervical cancer abnormal cells based on deep learning

doi: 10.13374/j.issn2095-9389.2021.01.12.001
More Information
  • Corresponding author: E-mail: jsf0912@aliyun.com
  • Received Date: 2021-01-12
    Available Online: 2021-06-18
  • Publish Date: 2021-09-18
  • Cervical cancer is a malignant tumor that highly endangers women’s lives. Cytological screening based on image processing is the most widely used detection method for precancerous screening. Recently, with the development of machine learning theory based on deep learning, the convolutional neural network has made a revolutionary breakthrough in the field of image recognition due to its strong and effective extraction ability. In addition, it has been widely used in the field of medical image analysis such as cervical abnormal cell detection. However, due to the characteristic high resolution and large size of pathological cell images, most of its local areas do not contain cell clusters. Moreover, when the deep learning model uses the method of exhausting candidate boxes to locate and identify abnormal cells, most of the sub-images obtained do not contain cell clusters. When the number of sub-images increases gradually, a large number of images without cell clusters as input to the object detection network will make the image analysis process redundant for a long time, which drastically slows down the speed of detection of the large-scale pathological image analysis. In view of this, this paper proposed a new detection strategy for abnormal cells in cervical cancer microscopic imaging. According to the pathological cell images obtained by the membrane method, the image classification network based on deep learning was first used to determine whether there were abnormal cells in the local area. If there were abnormal cells in the local area, the single-stage object detection method was used for further pathological cell image analysis, so that the abnormal cells in the images could be quickly and accurately located and identified. Experimental results show that the proposed method can double the speed of detection of cervical cancer abnormal cells.

     

  • loading
  • [1]
    馬丁, 奚玲. 宮頸癌專題討論——宮頸癌流行病學及病因學研究進展. 實用婦產科雜志, 2001, 17(2):61 doi: 10.3969/j.issn.1003-6946.2001.02.001

    Ma D, Xi L. Special discussion on cervical cancer: Research Progress in epidemiology and etiology of cervical cancer. J Pract Obstet Gynecol, 2001, 17(2): 61 doi: 10.3969/j.issn.1003-6946.2001.02.001
    [2]
    李聰聰, 朱莉. 宮頸癌的病因及宮頸癌疫苗現狀. 現代腫瘤醫學, 2018, 26(20):3333 doi: 10.3969/j.issn.1672-4992.2018.20.040

    Li C C, Zhu L. The cause of cervical cancer and the status of cervical cancer vaccine. J Mod Oncol, 2018, 26(20): 3333 doi: 10.3969/j.issn.1672-4992.2018.20.040
    [3]
    吳三春. 婦科普查對預防宮頸癌的意義. 中國醫藥指南, 2011, 9(27):91 doi: 10.3969/j.issn.1671-8194.2011.27.065

    Wu S C. Significance of gynecological census in prevention of cervical cancer. Guide China Med, 2011, 9(27): 91 doi: 10.3969/j.issn.1671-8194.2011.27.065
    [4]
    章文華, 李楠, 吳令英. 重視宮頸癌患者年輕化的趨勢. 浙江腫瘤, 2000, 6(2):112

    Zhang W H, Li N, Wu L Y. Attention should be paid on the trend of carcinoma of the cervix in young women. Zhejiang Cancer J, 2000, 6(2): 112
    [5]
    林泳秀. 宮頸癌的臨床病理特點與預后分析[學位論文]. 南寧: 廣西醫科大學, 2013

    Lin Y X. Clinical Pathological Features and Prognosis Analysis of Cervical Cancer [Dissertation]. Nanning: Guangxi Medical University, 2013
    [6]
    王力, 趙穩興, 趙璽龍, 等. 膜式和沉降式宮頸液基細胞學制片方法的比較研究. 解放軍醫藥雜志, 2011, 23(4):6 doi: 10.3969/j.issn.2095-140X.2011.04.003

    Wang L, Zhao W X, Zhao X L, et al. A comparative study of two methods of smear-making: Membrane-based and sedimentation in liquid-based cervical cytology. Med Pharm J Chin Peoples Liberation Army, 2011, 23(4): 6 doi: 10.3969/j.issn.2095-140X.2011.04.003
    [7]
    趙澄泉, 周先榮, 隋龍, 等. 宮頸癌篩查及臨床處理(細胞學、組織學和陰道鏡學). 北京: 北京科學技術出版社, 2017

    Zhao C Q, Zhou X R, Sui L, et al. Cervical Cancer Screening and Clinical Management (Cytology, Histology, Colposcopy). Beijing: Beijing Science and Technology Press, 2017
    [8]
    魏麗惠. 陰道鏡及宮頸細胞病理學規范化培訓教材. 北京: 人民衛生出版社, 2020

    Wei L H. Standardized Training Materials for Colposcopy and Cervical Cytopathology. Beijing: People’s Medical Publishing House, 2020
    [9]
    王軼英, 王悅, 喬友林, 等. 中國宮頸癌篩查未來之路——細胞學初篩的棄或守. 中國實用婦科與產科雜志, 2017, 33(3):324

    Wang Y Y, Wang Y, Qiao Y L, et al. The future of cervical cancer screening in China?Abandonment or conservation of cytological primary screening. Chin J Pract Gynecol Obstet, 2017, 33(3): 324
    [10]
    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436 doi: 10.1038/nature14539
    [11]
    Szeliski R. Computer Vision. London: Springer London Press, 2011
    [12]
    章毓晉. 圖像工程. 4版. 北京: 清華大學出版社, 2018

    Zhang Y Z. Image Engineering. 4th Ed. Beijing: Tsinghua University Press, 2018
    [13]
    史穎歡. 醫學圖像處理中的機器學習方法及其應用研究[學位論文]. 南京: 南京大學, 2013

    Shi Y H. Study of Machine Learning Techniques and Applications in Med-Ical Image Analysis [Dissertation]. Nanjing: Nanjing University, 2013
    [14]
    Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533 doi: 10.1038/323533a0
    [15]
    He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 770
    [16]
    蔡武斌. 癌細胞病理圖像的檢測技術研究[學位論文]. 太原: 中北大學, 2018

    Cai W B. Study on Detection Techniques of Pathological Images of Cancer Cells [Dissertation]. Taiyuan: North University of China, 2018
    [17]
    Kermany D S, Goldbaum M, Cai W J, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 2018, 172(5): 1122 doi: 10.1016/j.cell.2018.02.010
    [18]
    叢明, 吳童, 劉冬, 等. 基于監督學習的前列腺MR/TRUS圖像分割和配準方法. 工程科學學報, 2020, 42(10):1362

    Cong M, Wu T, Liu D, et al. Prostate MR/TRUS image segmentation and registration methods based on supervised learning. Chin J Eng, 2020, 42(10): 1362
    [19]
    Zhang L, Le L, Nogues I, et al. DeepPap: deep convolutional networks for cervical cell classification. IEEE J Biomed Heal Inform, 2017, 21(6): 1633 doi: 10.1109/JBHI.2017.2705583
    [20]
    Wu M, Yan C B, Liu H Q, et al. Automatic classification of cervical cancer from cytological images by using convolutional neural network. Biosci Rep, 2018, 38(6): BSR20181769 doi: 10.1042/BSR20181769
    [21]
    Jia D Y, Li Z Y, Zhang C W. Detection of cervical cancer cells based on strong feature CNN-SVM network. Neurocomputing, 2020, 411: 112 doi: 10.1016/j.neucom.2020.06.006
    [22]
    Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137 doi: 10.1109/TPAMI.2016.2577031
    [23]
    陳小槐. 子宮頸細胞學Bethesda報告系統(中文翻譯版, 原書第3版). 北京: 科學出版社, 2019

    Chen X H. The Bethesda System for Reporting Cervical Cytology (Definitions, Criteria, and Explanatory Notes). 3rd Ed. Beijing: Science press, 2019
    [24]
    賀又娥, 王友芳, 郎景和, 等. 計算機輔助細胞檢測系統配合陰道鏡檢查對子宮頸病變的診斷價值. 中華婦產科雜志, 1998, 33(5):265 doi: 10.3760/j.issn:0529-567X.1998.05.002

    He Y E, Wang Y F, Lang J H, et al. The evaluation of computer cytological test with colposcopy for the diagnosis of cervical lesions. Chin J Obstet Gynecol, 1998, 33(5): 265 doi: 10.3760/j.issn:0529-567X.1998.05.002
    [25]
    Stoler M H. Advances in cervical screening technology. Mod Pathol, 2000, 13(3): 275 doi: 10.1038/modpathol.3880048
    [26]
    周立平. 宮頸涂片自動輔助判讀系統中相關圖像技術的研究[學位論文]. 青島: 中國海洋大學, 2009

    Zhou L P. Cervical Smears Automatic Auxiliary System Related to Image Interpretation Techniques [Dissertation]. Qingdao: Ocean University of China, 2009
    [27]
    鄭珂, 張聲, 唐堅清. 計算機輔助閱片系統在宮頸細胞學篩查中的應用. 診斷病理學雜志, 2015, 22(6):364 doi: 10.3969/j.issn.1007-8096.2015.06.013

    Zheng K, Zhang S, Tang J Q. Application of Thinprep computer-assisted imaging system in cervical cytology. Chin J Diagn Pathol, 2015, 22(6): 364 doi: 10.3969/j.issn.1007-8096.2015.06.013
    [28]
    Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context // Computer Vision – ECCV 2014. Zurich, 2014: 740
    [29]
    Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning library[J/OL]. arXiv preprint (2019-12-3) [2021-6-24]. https://arxiv.org/abs/1912.01703
    [30]
    毛星云, 冷雪飛. Opencv3編程入門. 北京: 電子工業出版社, 2015

    Mao X Y, Leng X F. Introduction to Opencv3 programming. Beijing: Electronics industry publishing house, 2015
    [31]
    Huang G, Liu Z, Pleiss G, et al. Convolutional networks with dense connectivity. IEEE Trans Pattern Anal Mach Intell, 2019, doi: 10.1109/TPAMI.2019.2918284
    [32]
    Hu J, Shen L, Sun G. Squeeze-and-excitation networks // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132
    [33]
    Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks // International Conference on Machine Learning. Long Beach, 2019: 6105
    [34]
    Xie S N, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 5987
    [35]
    Zoph B, Vasudevan V, Shlens J, et al. Learning transferable architectures for scalable image recognition // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 8697
    [36]
    Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design // Computer Vision – ECCV 2018. Munich, 2018: 122
    [37]
    Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning // Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco, 2017(31): 1
    [38]
    Chollet F. Xception: deep learning with depthwise separable convolutions // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 1800
    [39]
    Cai Z W, Vasconcelos N. Cascade R-CNN: Delving into high quality object detection // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 6154
    [40]
    Pang J M, Chen K, Shi J P, et al. Libra R-CNN: Towards balanced learning for object detection // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, 2019: 821
    [41]
    Li Y H, Chen Y T, Wang N Y, et al. Scale-aware trident networks for object detection // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, 2019: 6053
    [42]
    Kong T, Sun F C, Liu H P, et al. FoveaBox: beyound anchor-based object detection. IEEE Trans Image Process, 2020, 29: 7389 doi: 10.1109/TIP.2020.3002345
    [43]
    Zhang S F, Chi C, Yao Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 9756
    [44]
    Ultralytics. YoloV5[EB/OL]. Github(2020-10-12)[2021-06-24]. https://github.com/ultralytics/YoloV5
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article views (1707) PDF downloads(225) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频