<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 6
May  2022
Turn off MathJax
Article Contents
WANG Hong-jiang, PENG Qing-song, YANG Ying, GUO Jia-bin. Research status and prospect of thickening technology for metal tailings[J]. Chinese Journal of Engineering, 2022, 44(6): 971-980. doi: 10.13374/j.issn2095-9389.2021.01.11.001
Citation: WANG Hong-jiang, PENG Qing-song, YANG Ying, GUO Jia-bin. Research status and prospect of thickening technology for metal tailings[J]. Chinese Journal of Engineering, 2022, 44(6): 971-980. doi: 10.13374/j.issn2095-9389.2021.01.11.001

Research status and prospect of thickening technology for metal tailings

doi: 10.13374/j.issn2095-9389.2021.01.11.001
More Information
  • Corresponding author: E-mail: monicayang1129@hotmail.com
  • Received Date: 2021-01-11
    Available Online: 2021-04-09
  • Publish Date: 2022-06-25
  • In recent years, paste technology has been rapidly promoted in domestic mines. It is a key technology for realizing green mining because it can effectively solve environmental and safety problems caused by mining. With the progress in science and technology, the research level of paste technology is constantly improving. Thickening technology of tailings is the primary procedure of paste backfill technology in metal mines, which can significantly improve the efficiency of tailings dewatering and utilization rate of tailings. Tailings thickening technology is an important part of the green development of mines. This paper presented a summary of the development process of tailings thickening and dewatering technology, dividing the development stage of the thickener into three: (1) ordinary thickener stage, (2) high-efficiency thickener stage, and (3) paste thickener stage. The application status of the thickening process of tailings and several typical application cases at home and abroad were also described. In addition, this paper explored different theories, including the single flocculation theory, multiple flocculation theory, bed compression theory under static/dynamic compression, and gravity thickening theory, along with the corresponding latest research progress of each theory. This paper also presented the main research methods of thickening of tailings, namely the static settlement experiment, small-scale thickening experiment, and semi-industrial thickening experiment. Advanced observational methods such as focused beam reflection measurement technology (FBRM) and particle video microscope technology (PVM) were also introduced. Moreover, the paper expounded on the research status of numerical simulation of tailings thickening technology and highlighted that the tailings thickening and dewatering technology is still in the development stage with some underlying problems, such as the instability of the key parameters of tailings thickening, the untimely production control of tailings thickening, and the imperfect information platform of tailings thickening. Overall, the development of tailings thickening technology is still facing numerous challenges. Finally, the direction of the development of tailing thickening technology is proposed in terms of personalization, automation, and intelligence.

     

  • loading
  • [1]
    程海勇. 時—溫效應下膏體流變參數及管阻特性[學位論文]. 北京: 北京科技大學, 2018

    Cheng H Y. Characteristics of Rheological Parameters and Pipe Resistance under the Time-Temperature Effect [Dissertation]. Beijing: University of Science and Technology Beijing, 2018
    [2]
    李公成. 全尾砂絮團尺寸變化及其濃密性能研究[學位論文]. 北京: 北京科技大學, 2019

    Li G C. Study on Size Change of Unclassified Tailings Flocs and Its Thickening Performance [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [3]
    馬池香, 秦華禮. 基于滲透穩定性分析的尾礦庫壩體穩定性研究. 工業安全與環保, 2008, 34(9):32 doi: 10.3969/j.issn.1001-425X.2008.09.014

    Ma C X, Qin H L. On the dam stability of the tailing pond based on the analysis on the seepage stability. Ind Saf Environ Prot, 2008, 34(9): 32 doi: 10.3969/j.issn.1001-425X.2008.09.014
    [4]
    姜素, 陸華, 曹瑞祥, 等. 某鐵礦尾礦庫及周邊土壤重金屬污染評價. 環境科學與技術, 2014, 37(增刊1): 274

    Jiangsu, Lu H, Cao R X, et al. Pollution evaluation of heavy metal in soils of an iron mine's tailing reservoir and its surrounding region. Environ Sci Technol, 2014, 37(Suppl 1): 274
    [5]
    王賢來, 姚維信, 王虎, 等. 礦山廢石全尾砂充填研究現狀與發展趨勢. 中國礦業, 2011, 20(9):76 doi: 10.3969/j.issn.1004-4051.2011.09.020

    Wang X L, Yao W X, Wang H, et al. The directions of R & D on backfill with waste rock and total tailings in underground mine. China Min Mag, 2011, 20(9): 76 doi: 10.3969/j.issn.1004-4051.2011.09.020
    [6]
    Concha F, Bürger R. Thickening in the 20th century: A historical perspective. Min Metall Explor, 2003, 20(2): 57
    [7]
    Concha F, Bürger R. A century of research in sedimentation and thickening. KONA Powder Part J, 2002, 20: 38 doi: 10.14356/kona.2002009
    [8]
    湛含輝, 羅彥偉. 高濃度細粒煤泥水的絮凝沉降研究. 煤炭科學技術, 2007, 35(2):76 doi: 10.3969/j.issn.0253-2336.2007.02.023

    Zhan H H, Luo Y W. Research on flocculation setting of high density fine particle coal slurry. Coal Sci Technol, 2007, 35(2): 76 doi: 10.3969/j.issn.0253-2336.2007.02.023
    [9]
    陳述文, 馬振聲. 高效濃密機的應用現狀及前景. 冶金礦山設計與建設, 1997(1):48

    Chen S W, Tong K W, Ma Z S, et al. High efficiency thickener—Current status and application prospects. Met Mine Des Constr, 1997(1): 48
    [10]
    阮竹恩, 吳愛祥, 王貽明, 等. 絮凝沉降對濃縮超細尾砂料漿屈服應力的影響. 工程科學學報, 2021, 43(10):1276

    Ruan Z E, Wu A X, Wang Y M, et al. Effect of flocculation sedimentation on the yield stress of thickened ultrafine tailings slurry. Chin J Eng, 2021, 43(10): 1276
    [11]
    周旭, 阮竹恩, 吳愛祥, 等. 基于FBRM和PVM技術的尾礦濃密過程絮團演化規律. 工程科學學報, 2021, 43(11):1425

    Zhou X, Ruan Z E, Wu A X, et al. Aggregate evolution rule during tailings thickening based on FBRM and PVM. Chin J Eng, 2021, 43(11): 1425
    [12]
    Tao D, Parekh B K, Zhao Y M, et al. Pilot-scale demonstration of deep cone? paste thickening process for phosphatic clay/sand disposal. Sep Sci Technol, 2010, 45(10): 1418 doi: 10.1080/01496391003652783
    [13]
    陳華君, 何艷明, 欒景麗, 等. 尾礦堆存處理工藝比較及應用. 云南冶金, 2012, 41(4):68 doi: 10.3969/j.issn.1006-0308.2012.04.018

    Chen H J, He Y M, Luan J L, et al. Comparison of tailings stacking technologies and their applications. Yunnan Metall, 2012, 41(4): 68 doi: 10.3969/j.issn.1006-0308.2012.04.018
    [14]
    郭利杰, 余斌. 中國金屬礦山充填技術與裝備的現狀和未來. 采礦技術, 2011, 11(3):12 doi: 10.3969/j.issn.1671-2900.2011.03.004

    Guo L J, Yu B. Status and future of filling technology and equipment in metal mines in China. Min Technol, 2011, 11(3): 12 doi: 10.3969/j.issn.1671-2900.2011.03.004
    [15]
    李仕亮, 杜玉艷. 膏體技術在新疆滴水銅礦尾礦堆存中的應用. 有色金屬工程, 2016, 6(4):73 doi: 10.3969/j.issn.2095-1744.2016.04.018

    Li S L, Du Y Y. Application of paste technology in tailings stacking of dishui chalcopyrite of Xinjiang. Nonferrous Met Eng, 2016, 6(4): 73 doi: 10.3969/j.issn.2095-1744.2016.04.018
    [16]
    McMahon J. Optimizing tailings disposal and water recovery. Pollut Eng, 2014, 46(8): 20
    [17]
    古昌紅. 有機高分子絮凝劑絮凝機理的研究進展. 重慶工商大學學報(自然科學版), 2007, 24(6):573

    Gu C H. Research progress in coagulation mechanism of organic macro-molecular coagulants. J Chongqing Technol Bus Univ Nat Sci, 2007, 24(6): 573
    [18]
    常青. 水處理絮凝學. 北京: 化學工業出版社, 2003

    Chang Q. Flocculation of Water Treatment. Beijing: Chemical Industry Press, 2003
    [19]
    Gregory J, Barany S. Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface Sci, 2011, 169(1): 1 doi: 10.1016/j.cis.2011.06.004
    [20]
    Lee C H, Liu J C. Sludge dewaterability and floc structure in dual polymer conditioning. Adv Environ Res, 2001, 5(2): 129 doi: 10.1016/S1093-0191(00)00049-6
    [21]
    Petzold G, Mende M, Lunkwitz K, et al. Higher efficiency in the flocculation of clay suspensions by using combinations of oppositely charged polyelectrolytes. Colloids Surfaces A Physicochem Eng Aspects, 2003, 218(1-3): 47 doi: 10.1016/S0927-7757(02)00584-8
    [22]
    Lu Q Y, Yan B, Xie L, et al. A two-step flocculation process on oil sands tailings treatment using oppositely charged polymer flocculants. Sci Total Environ, 2016, 565: 369 doi: 10.1016/j.scitotenv.2016.04.192
    [23]
    Lemanowicz M, Jach Z, Kilian E, et al. Ultra-fine coal flocculation using dual-polymer systems of ultrasonically conditioned and unmodified flocculant. Chem Eng J, 2011, 168(1): 159 doi: 10.1016/j.cej.2010.12.057
    [24]
    Lee C H, Liu J C. Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Res, 2000, 34(18): 4430 doi: 10.1016/S0043-1354(00)00209-8
    [25]
    Fan A X, Turro N J, Somasundaran P. A study of dual polymer flocculation. Colloids Surfaces A Physicochem Eng Aspects, 2000, 162(1-3): 141 doi: 10.1016/S0927-7757(99)00252-6
    [26]
    Sabah E, Yüzer H, ?elik M S. Characterization and dewatering of fine coal tailings by dual-flocculant systems. Int J Miner Process, 2004, 74(1-4): 303 doi: 10.1016/j.minpro.2004.03.001
    [27]
    Nasser M S, James A E. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Sep Purif Technol, 2006, 52(2): 241 doi: 10.1016/j.seppur.2006.04.005
    [28]
    Zbik M S, Smart R S C, Morris G E. Kaolinite flocculation structure. J Colloid Interface Sci, 2008, 328(1): 73 doi: 10.1016/j.jcis.2008.08.063
    [29]
    Mpofu P, Addai-Mensah J, Ralston J. Temperature influence of nonionic polyethylene oxide and anionic polyacrylamide on flocculation and dewatering behavior of kaolinite dispersions. J Colloid Interface Sci, 2004, 271(1): 145 doi: 10.1016/j.jcis.2003.09.042
    [30]
    Johnson S B, Scales P J, Dixon D R, et al. Use of a superthickener device to concentrate potable water sludge. Water Res, 2000, 34(1): 288 doi: 10.1016/S0043-1354(99)00118-9
    [31]
    Farrow J B, Johnston R R M, Simic K, et al. Consolidation and aggregate densification during gravity thickening. Chem Eng J, 2000, 80(1-3): 141 doi: 10.1016/S1383-5866(00)00083-6
    [32]
    Gladman B R, Rudman M, Scales P J. Experimental validation of a 1-D continuous thickening model using a pilot column. Chem Eng Sci, 2010, 65(13): 3937 doi: 10.1016/j.ces.2010.03.029
    [33]
    Comings E W, Pruiss C E, DeBord C. Continuous settling and thickening. Ind Eng Chem, 1954, 46(6): 1164 doi: 10.1021/ie50534a030
    [34]
    Usher S P, Scales P J. Steady state thickener modelling from the compressive yield stress and hindered settling function. Chem Eng J, 2005, 111(2-3): 253 doi: 10.1016/j.cej.2005.02.015
    [35]
    Gladman B, de Kretser R G, Rudman M, et al. Effect of shear on particulate suspension dewatering. Chem Eng Res Des, 2005, 83(7): 933
    [36]
    焦華喆, 靳翔飛, 陳新明, 等. 全尾砂重力濃密導水通道分布與細觀滲流規律. 黃金科學技術, 2019, 27(5):731

    Jiao H Z, Jin X F, Chen X M, et al. Distribution of water channel and law of meso seepage in gravity thickening of unclassified tailings. Gold Sci Technol, 2019, 27(5): 731
    [37]
    Jeldres R I, Fawell P D, Florio B J. Population balance modelling to describe the particle aggregation process: A review. Powder Technol, 2018, 326: 190 doi: 10.1016/j.powtec.2017.12.033
    [38]
    O'Donnell J A, Bayrak N. Review of channelling in batch sedimentation // 32nd Australasian Chemical Engineering Conference: Sustainable Processes. Sydney, 2004: 822
    [39]
    Du J H, Pushkarova R A, Smart R S C. A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes. Int J Miner Process, 2009, 93(1): 66 doi: 10.1016/j.minpro.2009.06.004
    [40]
    Eswaraiah C, Biswal S K, Mishra B K. Settling characteristics of ultrafine iron ore slimes. Int J Miner Metall Mater, 2012, 19(2): 95 doi: 10.1007/s12613-012-0521-6
    [41]
    吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015

    Wu A X, Wang H J. Theory and Technology of Paste Technology in Metal Mines. Beijing: Science Press, 2015
    [42]
    Kynch G J. A theory of sedimentation. Trans Faraday Soc, 1952, 48(0): 166
    [43]
    Batchelor G K. Sedimentation in a dilute dispersion of spheres. J Fluid Mech, 1972, 52(2): 245 doi: 10.1017/S0022112072001399
    [44]
    Fitch B. Current theory and thickener design. Ind Eng Chem, 1966, 58(10): 18 doi: 10.1021/ie50682a006
    [45]
    Buscall R, White L R. The consolidation of concentrated suspensions. Part 1. —The theory of sedimentation. J Chem Soc,Faraday Trans 1, 1987, 83(3): 873 doi: 10.1039/f19878300873
    [46]
    Landman K A, White L R, Eberl M. Pressure filtration of flocculated suspensions. AIChE J, 1995, 41(7): 1687 doi: 10.1002/aic.690410709
    [47]
    Betancourt F, Bürger R, Diehl S, et al. Advanced methods of flux identification for clarifier-thickener simulation models. Miner Eng, 2014, 63: 2 doi: 10.1016/j.mineng.2013.09.012
    [48]
    Parsapour G A, Hossininasab M, Yahyaei M, et al. Effect of settling test procedure on sizing thickeners. Sep Purif Technol, 2014, 122: 87 doi: 10.1016/j.seppur.2013.11.001
    [49]
    Landman K A, White L R, Buscall R. The continuous-flow gravity thickener: Steady state behavior. AIChE J, 1988, 34(2): 239 doi: 10.1002/aic.690340208
    [50]
    Usher S P, Spehar R, Scales P J. Theoretical analysis of aggregate densification: Impact on thickener performance. Chem Eng J, 2009, 151(1-3): 202 doi: 10.1016/j.cej.2009.02.027
    [51]
    王勇, 王洪江, 吳愛祥. 基于高徑比的深錐濃密機底流濃度數學模型. 武漢理工大學學報, 2011, 33(8):113 doi: 10.3963/j.issn.1671-4431.2011.08.025

    Wang Y, Wang H J, Wu A X. Mathematical model of deep cone thickener underflow concentration based on the height to diameter ratio. J Wuhan Univ Technol, 2011, 33(8): 113 doi: 10.3963/j.issn.1671-4431.2011.08.025
    [52]
    尹升華, 王勇. 泥層高度對細粒全尾濃密規律的影響. 科技導報, 2012, 30(7):29 doi: 10.3981/j.issn.1000-7857.2012.07.004

    Yin S H, Wang Y. Influence of mud height on the concentrastion of the fine tailing. Sci Technol Rev, 2012, 30(7): 29 doi: 10.3981/j.issn.1000-7857.2012.07.004
    [53]
    吳愛祥, 焦華喆, 王洪江, 等. 深錐濃密機攪拌刮泥耙扭矩力學模型. 中南大學學報(自然科學版), 2012, 43(4):1469

    Wu A X, Jiao H Z, Wang H J, et al. Mechanical model of scraper rake torque in deep-cone thickener. J Centl South Univ Sci Technol, 2012, 43(4): 1469
    [54]
    Biggs S, Habgood M, Jameson G J, et al. Aggregate structures formed via a bridging flocculation mechanism. Chem Eng J, 2000, 80(1-3): 13 doi: 10.1016/S1383-5866(00)00072-1
    [55]
    Bushell G C, Yan Y D, Woodfield D, et al. On techniques for the measurement of the mass fractal dimension of aggregates. Adv Colloid Interface Sci, 2002, 95(1): 1 doi: 10.1016/S0001-8686(00)00078-6
    [56]
    Yang Z, Yuan B, Huang X, et al. Evaluation of the flocculation performance of carboxymethyl chitosan-graft-polyacrylamide, a novel amphoteric chemically bonded composite flocculant. Water Res, 2012, 46(1): 107 doi: 10.1016/j.watres.2011.10.024
    [57]
    張方東, 李國棟, 裴繼誠, 等. 利用FBRM研究陽離子聚丙烯酰胺對高嶺土的動態絮凝過程. 中國造紙, 2013, 32(10):15 doi: 10.11980/j.issn.0254-508X.2013.10.004

    Zhang F D, Li G D, Pei J C, et al. Study on the dynamic flocculation process of Kaolin suspensions induced by cationic polyacrylamide by using FBRM. China Pulp Pap, 2013, 32(10): 15 doi: 10.11980/j.issn.0254-508X.2013.10.004
    [58]
    Rudman M, Simic K, Paterson D A, et al. Raking in gravity thickeners. Int J Miner Process, 2008, 86(1-4): 114 doi: 10.1016/j.minpro.2007.12.002
    [59]
    Rudman M, Paterson D A, Simic K. Efficiency of raking in gravity thickeners. Int J Miner Process, 2010, 95(1-4): 30 doi: 10.1016/j.minpro.2010.03.007
    [60]
    Tanguay M, Fawell P, Adkins S. Modelling the impact of two different flocculants on the performance of a thickener feedwell. Appl Math Model, 2014, 38(17-18): 4262 doi: 10.1016/j.apm.2014.04.047
    [61]
    Qiu L C, Liu J J, Liu Y, et al. CFD?DEM simulation of flocculation and sedimentation of cohesive fine particles // Proceedings of the 7th International Conference on Discrete Element Methods. Singapore, 2017: 537
    [62]
    Chaumeil F, Crapper M. Using the DEM?CFD method to predict Brownian particle deposition in a constricted tube. Particuology, 2014, 15: 94
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)

    Article views (3180) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频