Citation: | ZHANG Yong-jun, LI Xin-peng, WANG Jiu-hua, LIU Jing, HAN Jing-Tao. Metallographic analysis and kinetic equation of the graphitization process of graphitized steel[J]. Chinese Journal of Engineering, 2022, 44(2): 228-234. doi: 10.13374/j.issn2095-9389.2021.01.10.004 |
[1] |
Inam A, Edmonds D. Machinability of an experimental graphitised carbon steel. Mater Sci Forum, 2016, 879: 477 doi: 10.4028/www.scientific.net/MSF.879.477
|
[2] |
Inam A, Brydson R, Edmonds D V. Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel. Mater Charact, 2015, 106: 86 doi: 10.1016/j.matchar.2015.05.014
|
[3] |
He K, Daniels H R, Brown A, et al. An electron microscopic study of spheroidal graphite nodules formed in a medium-carbon steel by annealing. Acta Mater, 2007, 55(9): 2919 doi: 10.1016/j.actamat.2006.12.029
|
[4] |
Katayama S, Toda M. Machinability of medium carbon graphitic steel. J Mater Process Technol, 1996, 62(4): 358 doi: 10.1016/S0924-0136(96)02435-1
|
[5] |
Iwamoto T, Murakami T. Bar and wire steels for gears and valves of automobiles-eco-friendly free cutting steel without lead addition. Jfe Giho, 2004, 4: 74
|
[6] |
Iwamoto T, Hoshino T, Matsuzaki A, et al. A new developed unleaded free cutting steel which has both of high fatigue strengh and excellent machinability using graphitization of carbon in the steel. Material Japan, 2003, 42(2): 163 doi: 10.2320/materia.42.163
|
[7] |
Mokhtari A, Rashidi A M. The transformation of CK45 steel to the dual phase graphite steel and the study of its microstructure. Indian J Fund Appl Life Sci, 2015, 5(S2): 1749
|
[8] |
Rounaghi S A, Kiani-Rashid A R. A study on graphitisation acceleration during annealing of martensitic hypereutectoid steel. Phase Transitions, 2011, 84(11-12): 981 doi: 10.1080/01411594.2011.563153
|
[9] |
Inam A, He K J, Edmonds D. Graphitisation: A potential new route to free-machining steels // Proceedings of HSLA Steels 2015 and Micro alloying 2015 and OES 2015. Hangzhou, 2016: 817
|
[10] |
Kim Y J, Bae S W, Lim N S, et al. Graphitization behavior of medium-carbon high-silicon steel and its dependence on temperature and grain size. Mater Sci Eng A, 2020, 785: 139392 doi: 10.1016/j.msea.2020.139392
|
[11] |
Gao J X, Wei B Q, Li D D, et al. Nucleation and growth characteristics of graphite spheroids in bainite during graphitization annealing of a medium carbon steel. Mater Charact, 2016, 118: 1 doi: 10.1016/j.matchar.2016.05.003
|
[12] |
陳宣宇. 中碳鋼的石墨化工藝研究[學位論文]. 昆明: 昆明理工大學, 2016
Chen X Y. Study on Graphitization Process of Medium Carbon Steel [Dissertation]. Kunming: Kunming University of Science and Technology, 2016
|
[13] |
陳宣宇, 曹建春, 周曉龍. 熱處理對石墨易切削鋼顯微組織的影響. 熱加工工藝, 2017, 46(4):234
Chen X Y, Cao J C, Zhou X L. Effect of heat treatment on microstructure of graphitized free-cutting steel. Hot Work Technol, 2017, 46(4): 234
|
[14] |
張政, 李瑞武, 馬柯鑫, 等. 中溫形變對45鋼石墨化的影響. 遼寧科技大學學報, 2018, 41(5):351
Zhang Z, Li R W, Ma K X, et al. Effect of medium temperature deformation on graphitization of 45 steel. J Univ Sci Technol Liaoning, 2018, 41(5): 351
|
[15] |
張永軍. 亞共析石墨化易切削鋼的研究與開發[博士后研究工作報告]. 北京: 北京科技大學, 首鋼技術研究院, 2006
Zhang Y J. Research and Development of Hypoeutectoid Graphitized Free Cutting Steel [Dissertation]. Beijing: University of Science and Technology Beijing, Shougang Research Institute of Technology, 2006
|
[16] |
張永軍, 韓靜濤, 王全禮, 等. 亞共析石墨化易切削鋼的開發. 鋼鐵, 2008, 43(8):73 doi: 10.3321/j.issn:0449-749X.2008.08.017
Zhang Y J, Han J T, Wang Q L, et al. Research and development of graphitized hypoeutectoid free cutting steel. Iron Steel, 2008, 43(8): 73 doi: 10.3321/j.issn:0449-749X.2008.08.017
|
[17] |
Zhang Y J, Han J T. Microstructure and properties of graphitized free-cutting steel. Russ Metall (Met)
|
[18] |
張永軍, 張鵬程, 張波, 等. 石墨化碳素鋼室溫壓縮過程中的不均勻變形行為. 工程科學學報, 2019, 41(8):1037
Zhang Y J, Zhang P C, Zhang B, et al. Inhomogeneous deformation behavior in compressive deformation process at room temperature of graphitized carbon steel. Chin J Eng, 2019, 41(8): 1037
|
[19] |
張永軍, 王九花, 李新鵬, 等. 石墨化鋼壓縮溫變形行為的試驗研究. 哈爾濱工程大學學報, 2021, 42(3):433
Zhang Y J, Wang J H, Li X P, et al. Experimental research on the deformation behavior of graphitized steel under medium temperature compression. J Harbin Eng Univ, 2021, 42(3): 433
|
[20] |
尹云洋, 方芳, 嚴翔, 等. 環保石墨易切削鋼的組織及性能. 材料熱處理學報, 2013, 34(4):133
Yin Y Y, Fang F, Yan X, et al. Microstructure and properties of environmental graphitized free-cutting steel. Trans Mater Heat Treat, 2013, 34(4): 133
|
[21] |
Yin Y Y, Fang F, Luo G H, et al. Microstructure evolution of environmental graphitized hypoeutectoid free cutting steel. Appl Mech Mater, 2014, 633-634: 192 doi: 10.4028/www.scientific.net/AMM.633-634.192
|
[22] |
佳貝. 加工性能優良的高碳冷軋薄板. 鋼鐵, 1993(9):75)
Jia B. High carbon cold rolled sheet with excellent formability. Iron Steel, 1993(9): 75
|
[23] |
Fukui K, Mizui N, Arai M, et al. Effect of carbon and phosphorus contents on the graphitization of cementite in high carbon sheet steels. Tetsu-to-hagané, 1996, 82(12): 1029
|
[24] |
Neri M A, Colás R, Valtierra S. Graphitization in high carbon commercial steels. J Mater Eng Perform, 1998, 7(4): 467 doi: 10.1361/105994998770347602
|
[25] |
郭正洪. 固態相變動力學及晶體學. 上海: 上海交通大學出版社, 2019
Guo Z H. Kinetics and Crystallography of Solid State Transformations. Shanghai: Shanghai Jiao Tong University Press, 2019
|
[26] |
蔡珣. 材料科學與工程基礎. 上海: 上海交通大學出版社, 2010
Cai X. Fundamentals of Materials Science and Engineering. Shanghai: Shanghai Jiao Tong University Press, 2010
|