<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
CHEN Zhao-yu, JING Feng-wei, LI Jie, GUO Qiang. Recognition algorithm of hot-rolled strip steel water beam mark based on a semi-supervised learning model of an improved denoising autoencoder[J]. Chinese Journal of Engineering, 2022, 44(8): 1338-1348. doi: 10.13374/j.issn2095-9389.2021.01.04.004
Citation: CHEN Zhao-yu, JING Feng-wei, LI Jie, GUO Qiang. Recognition algorithm of hot-rolled strip steel water beam mark based on a semi-supervised learning model of an improved denoising autoencoder[J]. Chinese Journal of Engineering, 2022, 44(8): 1338-1348. doi: 10.13374/j.issn2095-9389.2021.01.04.004

Recognition algorithm of hot-rolled strip steel water beam mark based on a semi-supervised learning model of an improved denoising autoencoder

doi: 10.13374/j.issn2095-9389.2021.01.04.004
More Information
  • Corresponding author: E-mail: guoqiang@nercar.ustb.edu.cn
  • Received Date: 2021-08-04
    Available Online: 2021-06-18
  • Publish Date: 2022-07-06
  • The water beam mark is a common problem in slab heating, which causes quality defects on strip steel. In hot strip rolling, the heating quality of the slab considerably influences the rolling stability and quality of the finished strip. The water beam mark caused by the heating process and equipment is a common defect in the slab heating. A slab water beam imprint has a great influence on the control precision of the rolling force and thickness of the finished strip. Presently, recognizing the water beam mark is difficult and the workload in the industry is heavy. To solve these problems, this study proposed a recognition algorithm of a hot-rolled strip steel water beam mark based on a semisupervised learning model of an improved denoising autoencoder (DAE). Based on the DAE, random noise was added to each layer of the coding layer, a classification layer was added after a hidden layer, and fake labels were added to the training data. Decoding and classification training are conducted simultaneously. These methods result in the model becoming semisupervised. In this study, we extract the temperature difference of the strip temperature data at the outlet of the roughing mill and use it to train the model. Experimental results showed that the algorithm can accurately recognize the water beam mark of strip steel. The classification accuracy of the proposed model is 5.0%–10.0% higher than other mainstream models when the number of tag proportions is small. When the number of tag proportions is large, the accuracy of the proposed model reaches up to 93.8%. According to the result, the production efficiency can be improved using this model.

     

  • loading
  • [1]
    魯照權, 洪志, 季亮. 鋼坯加熱爐步進梁模擬器研究. 制造業自動化, 2017, 39(4):135 doi: 10.3969/j.issn.1009-0134.2017.04.034

    Lu Z Q, Hong Z, Ji L. Research on simulator of walking beam in billet heating furnace. Manuf Autom, 2017, 39(4): 135 doi: 10.3969/j.issn.1009-0134.2017.04.034
    [2]
    齊鳳升, 王子松, 李寶寬. 基于加熱爐多場耦合傳熱的板坯加熱均勻性. 東北大學學報(自然科學版), 2019, 40(10):1413 doi: 10.12068/j.issn.1005-3026.2019.10.009

    Qi F S, Wang Z S, Li B K. Slab heating uniformity based on multi-field coupling heat transfer in reheating furnace. J Northeast Univ Nat Sci, 2019, 40(10): 1413 doi: 10.12068/j.issn.1005-3026.2019.10.009
    [3]
    肖楠, 胡文超, 江華, 等. 步進梁式加熱爐水梁黑印數值模擬. 工業爐, 2013, 35(5):40 doi: 10.3969/j.issn.1001-6988.2013.05.012

    Xiao N, Hu W C, Jiang H, et al. Numerical simulation of water beam black imprint in walking beam reheating furnace. Ind Furn, 2013, 35(5): 40 doi: 10.3969/j.issn.1001-6988.2013.05.012
    [4]
    陳國鋒. 厚板軋機關于水梁印問題的分析及優化 //第十二屆中國鋼鐵年會論文集. 北京, 2019: 8

    Chen G F. Analysis and improvement for water beam mark during heavy plate rolling // Proceedings of China Iron & Steel Annual Meeting. Beijing, 2019: 8
    [5]
    孫志斌. 加熱爐水梁黑印模擬研究. 工業加熱, 2016, 45(5):30 doi: 10.3969/j.issn.1002-1639.2016.05.009

    Sun Z B. Simulation research on heating furnace water beam's black mark. Ind Heat, 2016, 45(5): 30 doi: 10.3969/j.issn.1002-1639.2016.05.009
    [6]
    王強. 1780熱軋質量分析系統. 冶金自動化, 2006, 30(3):17 doi: 10.3969/j.issn.1000-7059.2006.03.004

    Wang Q. Quality analysis system of 1780 mm hot rolling mill. Metall Ind Autom, 2006, 30(3): 17 doi: 10.3969/j.issn.1000-7059.2006.03.004
    [7]
    朱永波, 張飛, 張勇軍, 等. 基于粒子群優化的帶鋼凸度神經網絡預測模型研究. 冶金自動化, 2019, 43(2):11

    Zhu Y B, Zhang F, Zhang Y J, et al. Particle swarm optimized neural network for strip crown prediction model research. Metall Ind Autom, 2019, 43(2): 11
    [8]
    李灃驥, 劉鴻飛, 張興. 基于PSO-RBF神經網絡的軋輥偏心在線辨識. 鋼鐵研究學報, 2017, 29(11):906

    Li F J, Liu H F, Zhang X. On-line identification of roll eccentricity based on PSO-RBF neural network. J Iron Steel Res, 2017, 29(11): 906
    [9]
    蔡自興. 人工智能在冶金自動化中的應用. 冶金自動化, 2015, 39(1):1 doi: 10.3969/j.issn.1000-7059.2015.01.001

    Cai Z X. Application of Artificial Intelligence in metallurgy automation. Metall Ind Autom, 2015, 39(1): 1 doi: 10.3969/j.issn.1000-7059.2015.01.001
    [10]
    魏立新, 魏新宇, 孫浩, 等. 基于深度網絡訓練的鋁熱軋軋制力預報. 中國有色金屬學報, 2018, 28(10):2070

    Wei L X, Wei X Y, Sun H, et al. Prediction of aluminum hot rolling force based on deep network. Chin J Nonferrous Met, 2018, 28(10): 2070
    [11]
    彭良貴, 王登剛, 李杰, 等. 數據驅動的卷取溫度模型參數即時自適應設定算法. 工程科學學報, 2020, 42(6):778

    Peng L G, Wang D G, Li J, et al. Data-driven adaptive setting algorithm for coiling temperature model parameter. Chin J Eng, 2020, 42(6): 778
    [12]
    馬威, 李維剛, 趙云濤, 等. 基于深度學習的熱連軋軋制力預測. 鋼鐵研究學報, 2019, 31(9):805

    Ma W, Li W G, Zhao Y T, et al. Prediction of hot-rolled roll force based on deep learning. J Iron Steel Res, 2019, 31(9): 805
    [13]
    林偉路, 丁小鳳, 雙遠華. BP神經網絡對斜軋穿孔軋制力的預測. 鍛壓技術, 2018, 43(10):175

    Lin W L, Ding X F, Shuang Y H. Prediction on rolling force of oblique rolling piercing based on BP neural network. Forg Stamp Technol, 2018, 43(10): 175
    [14]
    劉杰輝, 王桂霞, 劉永康. 基于灰色理論和神經網絡的軋制力預測. 鍛壓技術, 2015, 40(10):126

    Liu J H, Wang G X, Liu Y K. Prediction of rolling force based on grey theory and neural network. Forg Stamp Technol, 2015, 40(10): 126
    [15]
    張永峰, 陸志強. 基于集成神經網絡的剩余壽命預測. 工程科學學報, 2020, 42(10):1372

    Zhang Y F, Lu Z Q. Remaining useful life prediction based on an integrated neural network. Chin J Eng, 2020, 42(10): 1372
    [16]
    武凱, 劉新忠, 張笑雄, 等. 基于PCA-DBN的熱連軋數據特征提取. 冶金自動化, 2020, 44(3):21

    Wu K, Liu X Z, Zhang X X, et al. Feature extraction of hot strip rolling data based on PCA-DBN. Metall Ind Autom, 2020, 44(3): 21
    [17]
    Rasmus A, Berglund M, Honkala M, et al. Semi-supervised learning with ladder networks. Adv Neural Info Process Syst, 2015, 28: 3546
    [18]
    Springenberg J T. Unsupervised and semi-supervised learning with categorical generative adversarial networks // International Conference on Learning Representations. San Juan, 2016
    [19]
    Hinton G E, Zemel R S. Autoencoders, minimum description length, and Helmholtz free energy. Adv Neural Inf Process Syst, 1994, 6: 3
    [20]
    Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders // Proceedings of the 25th International Conference on Machine Learning. Helsinki, 2008: 1096
    [21]
    Pezeshki M, Fan L, Brakel P, et al. Deconstructing the ladder network architecture // International Conference on Machine Learning. New York, 2016: 2368
    [22]
    Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504 doi: 10.1126/science.1127647
    [23]
    Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735 doi: 10.1162/neco.1997.9.8.1735
    [24]
    劉陽, 郜志英, 周曉敏, 等. 工業數據驅動下薄板冷軋顫振的LSTM智能預報. 機械工程學報, 2020, 56(11):121 doi: 10.3901/JME.2020.11.121

    Liu Y, Gao Z Y, Zhou X M, et al. Industrial data-driven intelligent forecast for chatter of cold rolling of thin strip with LSTM recurrent neural network. J Mech Eng, 2020, 56(11): 121 doi: 10.3901/JME.2020.11.121
    [25]
    張鵬, 楊濤, 劉亞楠, 等. 基于CNN-LSTM的QAR數據特征提取與預測. 計算機應用研究, 2019, 36(10):2958

    Zhang P, Yang T, Liu Y N, et al. Feature extraction and prediction of QAR data based on CNN-LSTM. Appl Res Comput, 2019, 36(10): 2958
    [26]
    陸繼翔, 張琪培, 楊志宏, 等. 基于CNN-LSTM混合神經網絡模型的短期負荷預測方法. 電力系統自動化, 2019, 43(8):131 doi: 10.7500/AEPS20181012004

    Lu J X, Zhang Q P, Yang Z H, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model. Autom Electr Power Syst, 2019, 43(8): 131 doi: 10.7500/AEPS20181012004
    [27]
    賈春玉, 康凱旋, 高偉, 等. 基于CNN+LSTM神經網絡的電液伺服閥故障預測. 液壓與氣動, 2020(12):173 doi: 10.11832/j.issn.1000-4858.2020.12.027

    Jia C Y, Kang K X, Gao W, et al. Fault prediction of electro-hydraulic servo valve based on CNN+LSTM neural network. Chin Hydraul Pneum, 2020(12): 173 doi: 10.11832/j.issn.1000-4858.2020.12.027
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article views (499) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频