Citation: | CHEN Zhao-yu, JING Feng-wei, LI Jie, GUO Qiang. Recognition algorithm of hot-rolled strip steel water beam mark based on a semi-supervised learning model of an improved denoising autoencoder[J]. Chinese Journal of Engineering, 2022, 44(8): 1338-1348. doi: 10.13374/j.issn2095-9389.2021.01.04.004 |
[1] |
魯照權, 洪志, 季亮. 鋼坯加熱爐步進梁模擬器研究. 制造業自動化, 2017, 39(4):135 doi: 10.3969/j.issn.1009-0134.2017.04.034
Lu Z Q, Hong Z, Ji L. Research on simulator of walking beam in billet heating furnace. Manuf Autom, 2017, 39(4): 135 doi: 10.3969/j.issn.1009-0134.2017.04.034
|
[2] |
齊鳳升, 王子松, 李寶寬. 基于加熱爐多場耦合傳熱的板坯加熱均勻性. 東北大學學報(自然科學版), 2019, 40(10):1413 doi: 10.12068/j.issn.1005-3026.2019.10.009
Qi F S, Wang Z S, Li B K. Slab heating uniformity based on multi-field coupling heat transfer in reheating furnace. J Northeast Univ Nat Sci, 2019, 40(10): 1413 doi: 10.12068/j.issn.1005-3026.2019.10.009
|
[3] |
肖楠, 胡文超, 江華, 等. 步進梁式加熱爐水梁黑印數值模擬. 工業爐, 2013, 35(5):40 doi: 10.3969/j.issn.1001-6988.2013.05.012
Xiao N, Hu W C, Jiang H, et al. Numerical simulation of water beam black imprint in walking beam reheating furnace. Ind Furn, 2013, 35(5): 40 doi: 10.3969/j.issn.1001-6988.2013.05.012
|
[4] |
陳國鋒. 厚板軋機關于水梁印問題的分析及優化 //第十二屆中國鋼鐵年會論文集. 北京, 2019: 8
Chen G F. Analysis and improvement for water beam mark during heavy plate rolling // Proceedings of China Iron & Steel Annual Meeting. Beijing, 2019: 8
|
[5] |
孫志斌. 加熱爐水梁黑印模擬研究. 工業加熱, 2016, 45(5):30 doi: 10.3969/j.issn.1002-1639.2016.05.009
Sun Z B. Simulation research on heating furnace water beam's black mark. Ind Heat, 2016, 45(5): 30 doi: 10.3969/j.issn.1002-1639.2016.05.009
|
[6] |
王強. 1780熱軋質量分析系統. 冶金自動化, 2006, 30(3):17 doi: 10.3969/j.issn.1000-7059.2006.03.004
Wang Q. Quality analysis system of 1780 mm hot rolling mill. Metall Ind Autom, 2006, 30(3): 17 doi: 10.3969/j.issn.1000-7059.2006.03.004
|
[7] |
朱永波, 張飛, 張勇軍, 等. 基于粒子群優化的帶鋼凸度神經網絡預測模型研究. 冶金自動化, 2019, 43(2):11
Zhu Y B, Zhang F, Zhang Y J, et al. Particle swarm optimized neural network for strip crown prediction model research. Metall Ind Autom, 2019, 43(2): 11
|
[8] |
李灃驥, 劉鴻飛, 張興. 基于PSO-RBF神經網絡的軋輥偏心在線辨識. 鋼鐵研究學報, 2017, 29(11):906
Li F J, Liu H F, Zhang X. On-line identification of roll eccentricity based on PSO-RBF neural network. J Iron Steel Res, 2017, 29(11): 906
|
[9] |
蔡自興. 人工智能在冶金自動化中的應用. 冶金自動化, 2015, 39(1):1 doi: 10.3969/j.issn.1000-7059.2015.01.001
Cai Z X. Application of Artificial Intelligence in metallurgy automation. Metall Ind Autom, 2015, 39(1): 1 doi: 10.3969/j.issn.1000-7059.2015.01.001
|
[10] |
魏立新, 魏新宇, 孫浩, 等. 基于深度網絡訓練的鋁熱軋軋制力預報. 中國有色金屬學報, 2018, 28(10):2070
Wei L X, Wei X Y, Sun H, et al. Prediction of aluminum hot rolling force based on deep network. Chin J Nonferrous Met, 2018, 28(10): 2070
|
[11] |
彭良貴, 王登剛, 李杰, 等. 數據驅動的卷取溫度模型參數即時自適應設定算法. 工程科學學報, 2020, 42(6):778
Peng L G, Wang D G, Li J, et al. Data-driven adaptive setting algorithm for coiling temperature model parameter. Chin J Eng, 2020, 42(6): 778
|
[12] |
馬威, 李維剛, 趙云濤, 等. 基于深度學習的熱連軋軋制力預測. 鋼鐵研究學報, 2019, 31(9):805
Ma W, Li W G, Zhao Y T, et al. Prediction of hot-rolled roll force based on deep learning. J Iron Steel Res, 2019, 31(9): 805
|
[13] |
林偉路, 丁小鳳, 雙遠華. BP神經網絡對斜軋穿孔軋制力的預測. 鍛壓技術, 2018, 43(10):175
Lin W L, Ding X F, Shuang Y H. Prediction on rolling force of oblique rolling piercing based on BP neural network. Forg Stamp Technol, 2018, 43(10): 175
|
[14] |
劉杰輝, 王桂霞, 劉永康. 基于灰色理論和神經網絡的軋制力預測. 鍛壓技術, 2015, 40(10):126
Liu J H, Wang G X, Liu Y K. Prediction of rolling force based on grey theory and neural network. Forg Stamp Technol, 2015, 40(10): 126
|
[15] |
張永峰, 陸志強. 基于集成神經網絡的剩余壽命預測. 工程科學學報, 2020, 42(10):1372
Zhang Y F, Lu Z Q. Remaining useful life prediction based on an integrated neural network. Chin J Eng, 2020, 42(10): 1372
|
[16] |
武凱, 劉新忠, 張笑雄, 等. 基于PCA-DBN的熱連軋數據特征提取. 冶金自動化, 2020, 44(3):21
Wu K, Liu X Z, Zhang X X, et al. Feature extraction of hot strip rolling data based on PCA-DBN. Metall Ind Autom, 2020, 44(3): 21
|
[17] |
Rasmus A, Berglund M, Honkala M, et al. Semi-supervised learning with ladder networks. Adv Neural Info Process Syst, 2015, 28: 3546
|
[18] |
Springenberg J T. Unsupervised and semi-supervised learning with categorical generative adversarial networks // International Conference on Learning Representations. San Juan, 2016
|
[19] |
Hinton G E, Zemel R S. Autoencoders, minimum description length, and Helmholtz free energy. Adv Neural Inf Process Syst, 1994, 6: 3
|
[20] |
Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders // Proceedings of the 25th International Conference on Machine Learning. Helsinki, 2008: 1096
|
[21] |
Pezeshki M, Fan L, Brakel P, et al. Deconstructing the ladder network architecture // International Conference on Machine Learning. New York, 2016: 2368
|
[22] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504 doi: 10.1126/science.1127647
|
[23] |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735 doi: 10.1162/neco.1997.9.8.1735
|
[24] |
劉陽, 郜志英, 周曉敏, 等. 工業數據驅動下薄板冷軋顫振的LSTM智能預報. 機械工程學報, 2020, 56(11):121 doi: 10.3901/JME.2020.11.121
Liu Y, Gao Z Y, Zhou X M, et al. Industrial data-driven intelligent forecast for chatter of cold rolling of thin strip with LSTM recurrent neural network. J Mech Eng, 2020, 56(11): 121 doi: 10.3901/JME.2020.11.121
|
[25] |
張鵬, 楊濤, 劉亞楠, 等. 基于CNN-LSTM的QAR數據特征提取與預測. 計算機應用研究, 2019, 36(10):2958
Zhang P, Yang T, Liu Y N, et al. Feature extraction and prediction of QAR data based on CNN-LSTM. Appl Res Comput, 2019, 36(10): 2958
|
[26] |
陸繼翔, 張琪培, 楊志宏, 等. 基于CNN-LSTM混合神經網絡模型的短期負荷預測方法. 電力系統自動化, 2019, 43(8):131 doi: 10.7500/AEPS20181012004
Lu J X, Zhang Q P, Yang Z H, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model. Autom Electr Power Syst, 2019, 43(8): 131 doi: 10.7500/AEPS20181012004
|
[27] |
賈春玉, 康凱旋, 高偉, 等. 基于CNN+LSTM神經網絡的電液伺服閥故障預測. 液壓與氣動, 2020(12):173 doi: 10.11832/j.issn.1000-4858.2020.12.027
Jia C Y, Kang K X, Gao W, et al. Fault prediction of electro-hydraulic servo valve based on CNN+LSTM neural network. Chin Hydraul Pneum, 2020(12): 173 doi: 10.11832/j.issn.1000-4858.2020.12.027
|