<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
ZHANG Guo-lei, CHENG Guo-guang, DAI Wei-xing, ZHANG Xu, JIANG Xin-yan. Simulation research on the degassing process of molten steel in a vacuum[J]. Chinese Journal of Engineering, 2022, 44(8): 1324-1330. doi: 10.13374/j.issn2095-9389.2021.01.01.002
Citation: ZHANG Guo-lei, CHENG Guo-guang, DAI Wei-xing, ZHANG Xu, JIANG Xin-yan. Simulation research on the degassing process of molten steel in a vacuum[J]. Chinese Journal of Engineering, 2022, 44(8): 1324-1330. doi: 10.13374/j.issn2095-9389.2021.01.01.002

Simulation research on the degassing process of molten steel in a vacuum

doi: 10.13374/j.issn2095-9389.2021.01.01.002
More Information
  • The vacuum degassing process plays an important role in the production of high cleanliness steel, so it is extremely urgent to determine the different reaction sites of liquid steel under reduced pressure and how to reflect the overall degassing efficiency through reasonable parameters. Based on a similar kinetic mechanism, this paper experimentally simulated the vacuum degassing process of molten steel using the release process of dissolved oxygen (DO) in water. Under a vacuum pressure condition, a large number of small bubbles were observed to precipitate from the vessel’s internal wall or the surface of the oxygen probe. This phenomenon corresponds well to the internal degassing reaction assumption made in previous degassing mathematical models. To verify the existence of internal degassing sites, mechanical stirring was introduced to analyze and calculate the degassing rate at the bath surface and internal site. Results showed that the degassing rate at the bath surface is very low throughout the whole process and the bubbles that precipitated from internal degassing sites greatly improve the DO removal rate. Especially at a pressure of 25 kPa, the degassing rate is about ten times that at the bath surface. It was also confirmed that the internal degassing reaction mainly occurs in the initial stage of degassing, particularly in the range of high DO concentration. Moreover, the removal of DO is a first-order reaction process, and its volumetric mass transfer coefficient k · A · V?1 is constant. Therefore, the removal process of DO can be used to simulate the degassing behavior of molten steel. To describe the effect of vacuum pressure and argon flow rate on k · A · V?1, the correlation between log (k · A · V?1) and log ε was determined by introducing the concept of stirring power density ε. Finally, the correlation was compared with the results from previous simulation studies.

     

  • loading
  • [1]
    朱博洪. RH真空精煉過程的氣液兩相流動及脫氫行為研究[學位論文]. 重慶: 重慶大學, 2017

    Zhu B H. Study on the Gas-Liquid Two Phase Flow and Dehydrogenation Behavior in RH Vacuum Refining Process [Dissertation]. Chongqing: Chongqing University, 2017
    [2]
    Karouni F, Wynne B P, Talamantes-Silva J, et al. Hydrogen degassing in a vacuum arc degasser using a three-phase eulerian method and discrete population balance model. Steel Res Int, 2018, 89(5): 1700550 doi: 10.1002/srin.201700550
    [3]
    Yu S, Miettinen J, Louhenkilpi S. Modeling study of nitrogen removal from the vacuum tank degasser. Steel Res Int, 2014, 85(9): 1393 doi: 10.1002/srin.201300262
    [4]
    Kleimt B, K?hle S, Johann K P, et al. Dynamic process model for denitrogenation and dehydrogenation by vacuum degassing. Scand J Metall, 2000, 29(5): 194 doi: 10.1034/j.1600-0692.2000.d01-23.x
    [5]
    Steneholm K, Andersson M, Tilliander A, et al. Removal of hydrogen, nitrogen and sulphur from tool steel during vacuum degassing. Ironmak Steelmak, 2013, 40(3): 199 doi: 10.1179/1743281212Y.0000000029
    [6]
    Ende M A, Kim Y M, Cho M K, et al. A kinetic model for the ruhrstahl heraeus (RH) degassing process. Metall Mater Trans B, 2011, 42(3): 477 doi: 10.1007/s11663-011-9495-4
    [7]
    Takahashi M, Matsumoto H, Saito T. Mechanism of decarburization in RH degasser. ISIJ Int, 1995, 35(12): 1452 doi: 10.2355/isijinternational.35.1452
    [8]
    You Z M, Cheng G G, Wang X C, et al. Mathematical model for decarburization of ultra-low carbon steel in single snorkel refining furnace. Metall Mater Trans B, 2015, 46(1): 459 doi: 10.1007/s11663-014-0182-0
    [9]
    Huang Y, Cheng G G, Wang Q M, et al. Mathematical model for decarburization of ultralow carbon steel during RH treatment. Ironmak Steelmak, 2020, 47(6): 655 doi: 10.1080/03019233.2019.1567999
    [10]
    Zhang G L, Cheng G G, Dai W X, et al. Study on dehydrogenation behaviour of molten steel in single snorkel refining furnace (SSRF) by a mathematical model. Ironmak Steelmak, 2020, 48(8): 909
    [11]
    Geng D Q, Lei H, Liu A H, et al. Physical simulation for mixing and mass transfer characteristics during RH vacuum refining process // The 9thVacuum Metallurgy and Surface Engineering Conference. Shenyang, 2009: 164
    [12]
    Kitamura S Y, Miyamoto K I, Tsujino R. The evaluation of gas-liquid reaction rate at bath surface by the gas adsorption and desorption tests. Tetsu-to-Hagane, 1994, 80(2): 101 doi: 10.2355/tetsutohagane1955.80.2_101
    [13]
    Maruoka N, Lazuardi F, Nogami H, et al. Effect of bottom bubbling conditions on surface reaction rate in oxygen–water system. ISIJ Int, 2010, 50(1): 89 doi: 10.2355/isijinternational.50.89
    [14]
    Maruoka N, Lazuardi F, Maeyama T, et al. Evaluation of bubble eye area to improve gas/liquid reaction rates at bath surfaces. ISIJ Int, 2011, 51(2): 236 doi: 10.2355/isijinternational.51.236
    [15]
    Guo D, Irons G A. Modeling of gas-liquid reactions in ladle metallurgy: Part I. Physical modeling. Metall Mater Trans B, 2000, 31(6): 1447
    [16]
    Guo D, Irons G A. Modeling of gas-liquid reactions in ladle metallurgy: Part II. Numerical simulation. Metall Mater Trans B, 2000, 31(6): 1457
    [17]
    Kim Y T, Yi K W. Effects of the ultrasound treatment on reaction rates in the RH processor water model system. Met Mater Int, 2019, 25(1): 238 doi: 10.1007/s12540-018-0160-1
    [18]
    Schneider S, Xie Y K, Oeters F. Mass transfer of dissolved gas from a liquid into a rising bubble swarm. Steel Res, 1991, 62(7): 296 doi: 10.1002/srin.199101299
    [19]
    Brennen C E. Cavitation and Bubble Dynamics. Cambridge: Cambridge University Press, 2014
    [20]
    俞海明. 電爐鋼水的爐外精煉技術. 北京: 冶金工業出版社, 2010

    Yu H M. Refining Technology of Molten Steel in Electric Furnace. Beijing: Metallurgical Industry Press, 2010
    [21]
    李軍宏. 氧在水中傳質過程的探討. 廣東化工, 2014, 41(3):69 doi: 10.3969/j.issn.1007-1865.2014.03.034

    Li J H. On mass transfer of oxygen in water. Guangdong Chem Ind, 2014, 41(3): 69 doi: 10.3969/j.issn.1007-1865.2014.03.034
    [22]
    Lü Y Q, Zheng S L, Wang S N, et al. Structure and diffusivity of oxygen in concentrated alkali-metal hydroxide solutions: A molecular dynamics simulation study. Acta Phys Chimica Sin, 2015, 31(6): 1045 doi: 10.3866/PKU.WHXB201504071
    [23]
    Higuchi Y, Shirota Y. Effect of stirring condition and bath shape on degassing behavior in water model. Tetsu-to-Hagane, 2000, 86(11): 748 doi: 10.2355/tetsutohagane1955.86.11_748
    [24]
    Sakaguchi K, Ito K. Measurement of the volumetric mass transfer coefficient of gas-stirred vessel under reduced pressure. ISIJ Int, 1995, 35(11): 1348 doi: 10.2355/isijinternational.35.1348
    [25]
    Sano M, Mori K. Circulating flow and mixing time in a molten metal bath with inert gas injection. Tetsu-to-Hagane, 1982, 68(16): 2451 doi: 10.2355/tetsutohagane1955.68.16_2451
    [26]
    Karouni F, Wynne B P, Talamantes-Silva J, et al. A parametric study on the effects of process conditions on dehydrogenation, wall shear and slag entrainment in the vacuum arc degasser using mathematical modelling. ISIJ Int, 2018, 58(9): 1679 doi: 10.2355/isijinternational.ISIJINT-2018-254
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)

    Article views (585) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频