<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
WU Xing-hui, LI Peng, GUO Qi-feng, CAI Mei-feng, REN Fen-hua, ZHANG Jie. Research progress on the evolution of physical and mechanical properties of thermally damaged rock[J]. Chinese Journal of Engineering, 2022, 44(5): 827-839. doi: 10.13374/j.issn2095-9389.2020.12.23.007
Citation: WU Xing-hui, LI Peng, GUO Qi-feng, CAI Mei-feng, REN Fen-hua, ZHANG Jie. Research progress on the evolution of physical and mechanical properties of thermally damaged rock[J]. Chinese Journal of Engineering, 2022, 44(5): 827-839. doi: 10.13374/j.issn2095-9389.2020.12.23.007

Research progress on the evolution of physical and mechanical properties of thermally damaged rock

doi: 10.13374/j.issn2095-9389.2020.12.23.007
More Information
  • Corresponding author: E-mail: caimeifeng@ustb.edu.cn
  • Received Date: 2020-12-23
    Available Online: 2021-03-27
  • Publish Date: 2022-05-25
  • With the depletion of the earth’s shallow resources, the exploration of deep rock engineering has become a research hotspot. The research mostly focuses on the influence of high temperature on the properties of deep rocks. This study aims to understand the thermal damage evolution mechanism in a rock under high temperature and make a reasonable evaluation on the safety and stability of underground rock engineering, such as ultra-deep well drilling, deep ground laboratory, nuclear waste disposal, and geothermal resource development. Based on the analysis and review of domestic and foreign literature, the authors systematically reviewed the research progress and development of deformation and failure of the high-temperature rock masses and temperature-varying rock masses under temperature effect. The physical and mechanical properties of rocks after being subjected to high temperature and under real-time high temperature were briefly described. The changes with temperature in the physical and mechanical parameters of deep rocks were summarized. The latest research on the deformation and failure mechanism under high temperature was analyzed, and the applications of advanced auxiliary test technologies, such as acoustic emission (AE), ultrasonic testing (UT), X-ray diffraction (XRD), polarizing microscope (PM), scanning electron microscope (SEM), nuclear magnetic resonance (NMR), and computed tomography (CT) scanning system, in the deformation and failure analysis were introduced. The advantages and disadvantages of the coupled thermal-stress model of the rock, the numerical analysis method, and the applicable conditions were summarized. The variation characteristics of the rock’s mechanical parameters under high temperature were briefly described. Finally, the limitations of the current studies on high-temperature thermal damage in deep rocks were pointed out. The future prospects were discussed from several aspects, i.e., to explore the mechanism of rock thermal damage in a multi-scale and multi-field-phase, and the evolution law of rock thermal damage was systematically analyzed from macro, meso, and micro aspects.

     

  • loading
  • [1]
    謝和平, 高峰, 鞠楊, 等. 深地煤炭資源流態化開采理論與技術構想. 煤炭學報, 2017, 42(3):547

    Xie H P, Gao F, Ju Y, et al. Theoretical and technological conception of the fluidization mining for deep coal resources. J China Coal Soc, 2017, 42(3): 547
    [2]
    Im K, Avouac J P. Investigating the role of thermal stresses on induced seismicity//SEG International Exposition and 90th Annual Meeting. Houston, 2020: 1335
    [3]
    Bauer S J, Johnson B. Effects of slow uniform heating on the physical properties of the westerly and charcoal granites//20th U S Symposium on Rock Mechanics (USRMS). Austin, 1979: ARMA-79-0007
    [4]
    Trice R, Warren N. Preliminary study on the correlation of acoustic velocity and permeability in two granodiorites from the LASL Fenton Hill deep borehole, GT-2, near the Valles Caldera, New Mexico [J/OL]. Los Alamos Scientific Lab (1977-07-01) [2020-12-20]. https://www.osti.gov/biblio/7219183
    [5]
    張衛強. 巖石熱損傷微觀機制與宏觀物理力學性質演變特征研究—以典型巖石為例[學位論文]. 徐州: 中國礦業大學, 2017

    Zhang W Q. Study on the Microscopic Mechanism of Rock Thermal Damage and the Evolution Characteristics of Macroscopic Physical and Mechanical Properties—Taking Typical Rock as an Example [Dissertation]. Xuzhou: China University of Mining and Technology, 2017
    [6]
    Zhang S Q, Paterson M S, Cox S F. Microcrack growth and healing in deformed calcite aggregates. Tectonophysics, 2001, 335(1-2): 17 doi: 10.1016/S0040-1951(01)00043-9
    [7]
    靳佩樺, 胡耀青, 邵繼喜, 等. 急劇冷卻后花崗巖物理力學及滲透性質試驗研究. 巖石力學與工程學報, 2018, 37(11):2556

    Jin P H, Hu Y Q, Shao J X, et al. Experimental study on physico-mechanical and transport properties of granite subjected to rapid cooling. Chin J Rock Mech Eng, 2018, 37(11): 2556
    [8]
    趙志丹, 高山, 駱庭川, 等. 秦嶺和華北地區地殼低速層的成因探討──巖石高溫高壓波速實驗證據. 地球物理學報, 1996, 39(5):642 doi: 10.3321/j.issn:0001-5733.1996.05.007

    Zhao Z D, Gao S, Luo T C, et al. Origin of the crustal low velocity layer of Qinling and North China evidence from laboratory measurement of p-wave velocity in rocks at high pt conditions. Chin J Geophys, 1996, 39(5): 642 doi: 10.3321/j.issn:0001-5733.1996.05.007
    [9]
    席道瑛, 謝端, 易良坤, 等. 溫度對巖石模量和波速的影響//第六屆全國巖石動力學學術會議文集. 昆明, 1998: 31

    Xi D Y, Xie R, Yi L K, et al. Effect of temperature on rock modulus and wave velocity//Proceedings of the 6th National Academic Conference on Rock Dynamics. Kunming, 1998: 31
    [10]
    胡建軍. 高溫作用下石灰巖的熱損傷特性研究[學位論文]. 徐州: 中國礦業大學, 2019

    Hu J J. Study on Thermal Damage Characteristics of Limestone under High Temperature [Dissertation]. Xuzhou: China University of Mining and Technology, 2019
    [11]
    Aurangzeb, Khan L A, Maqsood A. Prediction of effective thermal conductivity of porous consolidated media as a function of temperature: A test example of limestones. J Phys D:Appl Phys, 2007, 40(16): 4953 doi: 10.1088/0022-3727/40/16/030
    [12]
    張靜華, 王靖濤, 趙愛國. 高溫下花崗巖斷裂特性的研究. 巖土力學, 1987, 8(4):11

    Zhang J H, Wang J T, Zhao A G. Fracture properies of granite at high temperature. Rock Soil Mech, 1987, 8(4): 11
    [13]
    張連英, 茅獻彪, 楊逾, 等. 高溫狀態下石灰巖力學性能實驗研究. 遼寧工程技術大學學報, 2006, 25(增刊2): 121

    Zhang L Y, Mao X B, Yang Y, et al. Experiment study on mechanical properties of limestone at high temperature. J Liaoning Tech Univ, 2006, 25(Suppl 2): 121
    [14]
    Oda M. Modern developments in rock structure characterization. Compr Rock Eng, 1993, 1: 185
    [15]
    許錫昌. 溫度作用下三峽花崗巖力學性質及損傷特性初步研究[學位論文]. 武漢: 中國科學院武漢巖土力學研究所, 1998

    Xu X C. Preliminary study on Mechanical Properties and Damage Characteristics of Granite in Three Gorges under Temperature [Dissertation]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of sciences, 1998
    [16]
    Yang S Q, Xu P, Li Y B, et al. Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments. Geothermics, 2017, 69: 93 doi: 10.1016/j.geothermics.2017.04.009
    [17]
    蘇承東, 韋四江, 楊玉順, 等. 高溫后粗砂巖常規三軸壓縮變形與強度特征分析. 巖石力學與工程學報, 2015, 34(增刊1): 2792

    Su C D, Wei S J, Yang Y S, et al. Analysis of strength and conventional triaxial compression deformation characters of coarse sandstone after high temperature. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 2792
    [18]
    蘇承東, 韋四江, 秦本東, 等. 高溫對細砂巖力學性質影響機制的試驗研究. 巖土力學, 2017, 38(3):623

    Su C D, Wei S J, Qin B D, et al. Experimental study of influence mechanism of high temperature on mechanical properties of fine-grained sandstone. Rock Soil Mech, 2017, 38(3): 623
    [19]
    武晉文, 趙陽升, 萬志軍, 等. 高溫均勻壓力花崗巖熱破裂聲發射特性實驗研究. 煤炭學報, 2012, 37(7):1111

    Wu J W, Zhao Y S, Wan Z J, et al. Experimental study of acoustic emission of granite due to thermal cracking under high temperature and isostatic stress. J China Coal Soc, 2012, 37(7): 1111
    [20]
    Kumari W G P, Ranjith P G, Perera M S A, et al. Mechanical behaviour of Australian Strathbogie granite under in situ stress and temperature conditions: An application to geothermal energy extraction. Geothermics, 2017, 65: 44 doi: 10.1016/j.geothermics.2016.07.002
    [21]
    萬志軍, 趙陽升, 董付科, 等. 高溫及三軸應力下花崗巖體力學特性的實驗研究. 巖石力學與工程學報, 2008, 27(1):72 doi: 10.3321/j.issn:1000-6915.2008.01.011

    Wan Z J, Zhao Y S, Dong F K, et al. Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses. Chin J Rock Mech Eng, 2008, 27(1): 72 doi: 10.3321/j.issn:1000-6915.2008.01.011
    [22]
    Ding Q L, Ju F, Mao X B, et al. Experimental investigation of the mechanical behavior in unloading conditions of sandstone after high-temperature treatment. Rock Mech Rock Eng, 2016, 49(7): 2641 doi: 10.1007/s00603-016-0944-x
    [23]
    韓觀勝, 靖洪文, 蘇海健, 等. 高溫狀態砂巖遇水冷卻后力學行為研究. 中國礦業大學學報, 2020, 49(1):69

    Han G S, Jing H W, Su H J, et al. Experimental research on mechanical behaviors of water-cooled sandstone after high temperature treament. J China Univ Min Technol, 2020, 49(1): 69
    [24]
    喻勇, 徐達, 竇斌, 等. 高溫花崗巖遇水冷卻后可鉆性試驗研究. 地質科技情報, 2019, 38(4):287

    Yu Y, Xu D, Dou B, et al. Experimental study on drillability of high temperature granite after water cooling. Geol Sci Technol Inf, 2019, 38(4): 287
    [25]
    Zhang F, Zhao J J, Hu D W, et al. Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mech Rock Eng, 2018, 51(3): 677 doi: 10.1007/s00603-017-1350-8
    [26]
    朱振南, 田紅, 董楠楠, 等. 高溫花崗巖遇水冷卻后物理力學特性試驗研究. 巖土力學, 2018, 39(增刊2): 169

    Zhu Z N, Tian H, Dong N N, et al. Experimental study of physico-mechanical properties of heat-treated granite by water cooling. Rock Soil Mech, 2018, 39(Suppl 2): 169
    [27]
    郤保平, 吳陽春, 趙陽升. 熱沖擊作用下花崗巖宏觀力學參量與熱沖擊速度相關規律試驗研究. 巖石力學與工程學報, 2019, 38(11):2194

    Xi B P, Wu Y C, Zhao Y S. Experimental study on the relationship between macroscopic mechanical parameters of granite and thermal shock velocity under thermal shock. Chin J Rock Mech Eng, 2019, 38(11): 2194
    [28]
    Shao Z L, Wang Y, Tang X H. The influences of heating and uniaxial loading on granite subjected to liquid nitrogen cooling. Eng Geol, 2020, 271: 105614 doi: 10.1016/j.enggeo.2020.105614
    [29]
    杜守繼, 劉華, 職洪濤, 等. 高溫后花崗巖力學性能的試驗研究. 巖石力學與工程學報, 2004, 23(14):2359 doi: 10.3321/j.issn:1000-6915.2004.14.010

    Du S J, Liu H, Zhi H T, et al. Testing study on mechanical properties of post-high-temperature granite. Chin J Rock Mech Eng, 2004, 23(14): 2359 doi: 10.3321/j.issn:1000-6915.2004.14.010
    [30]
    朱合華, 閆治國, 鄧濤, 等. 3種巖石高溫后力學性質的試驗研究. 巖石力學與工程學報, 2006, 25(10):1945 doi: 10.3321/j.issn:1000-6915.2006.10.001

    Zhu H H, Yan Z G, Deng T, et al. Testing study on mechanical properties of tuff, granite and breccia after high temperatures. Chin J Rock Mech Eng, 2006, 25(10): 1945 doi: 10.3321/j.issn:1000-6915.2006.10.001
    [31]
    邱一平, 林卓英. 花崗巖樣品高溫后損傷的試驗研究. 巖土力學, 2006, 27(6):1005 doi: 10.3969/j.issn.1000-7598.2006.06.032

    Qiu Y P, Lin Z Y. Testing study on damage of granite samples after high temperature. Rock Soil Mech, 2006, 27(6): 1005 doi: 10.3969/j.issn.1000-7598.2006.06.032
    [32]
    Xu X L, Kang Z X, Ji M, et al. Research of microcosmic mechanism of brittle-plastic transition for granite under high temperature. Procedia Earth Planet Sci, 2009, 1(1): 432 doi: 10.1016/j.proeps.2009.09.069
    [33]
    Chen Y L, Ni J, Shao W, et al. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading. Int J Rock Mech Min Sci, 2012, 56: 62 doi: 10.1016/j.ijrmms.2012.07.026
    [34]
    Shao S S, Ranjith P G, Wasantha P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy. Geothermics, 2015, 54: 96 doi: 10.1016/j.geothermics.2014.11.005
    [35]
    Zhang W Q, Sun Q, Hao S Q, et al. Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng, 2016, 98: 1297 doi: 10.1016/j.applthermaleng.2016.01.010
    [36]
    Yin T B, Shu R H, Li X B, et al. Comparison of mechanical properties in high temperature and thermal treatment granite. Trans Nonferrous Met Soc China, 2016, 26(7): 1926 doi: 10.1016/S1003-6326(16)64311-X
    [37]
    Yang S Q, Ranjith P G, Jing H W, et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics, 2017, 65: 180 doi: 10.1016/j.geothermics.2016.09.008
    [38]
    Kumari W G P, Ranjith P G, Perera M S A, et al. Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Eng Geol, 2017, 229: 31 doi: 10.1016/j.enggeo.2017.09.012
    [39]
    Zhao Y S, Wan Z J, Feng Z J, et al. Evolution of mechanical properties of granite at high temperature and high pressure. Geomech Geophys Geo, 2017, 3(2): 199
    [40]
    Isaka B, Gamage R, Rathnaweera T, et al. An influence of thermally-induced micro-cracking under cooling treatments: Mechanical characteristics of Australian granite. Energies, 2018, 11(6): 1338 doi: 10.3390/en11061338
    [41]
    Bieniawski Z T. Mechanism of brittle fracture of rock: Part II—experimental studies. Int J Rock Mech Min Sci Geomech Abstr, 1967, 4(4): 407 doi: 10.1016/0148-9062(67)90031-9
    [42]
    Hallbauer D K, Wagner H, Cook N G W. Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int J Rock Mech Min Sci Geomech Abstr, 1973, 10(6): 713 doi: 10.1016/0148-9062(73)90015-6
    [43]
    謝衛紅, 高峰, 李順才, 等. 石灰巖熱損傷破壞機制研究. 巖土力學, 2007, 28(5):1021 doi: 10.3969/j.issn.1000-7598.2007.05.032

    Xie W H, Gao F, Li S C, et al. Study on mechanism of thermal damage fracture for limestone. Rock Soil Mech, 2007, 28(5): 1021 doi: 10.3969/j.issn.1000-7598.2007.05.032
    [44]
    姜崇喜, 謝強. 大理巖細觀破壞行為的實時觀察與分析. 西南交通大學學報, 1999, 34(1):87

    Jiang C X, Xie Q. Real time observation and analysis of meso fracture behavior of marble samples. J Southwest Jiaotong Univ, 1999, 34(1): 87
    [45]
    尚嘉蘭, 孔常靜, 李廷芥, 等. 巖石細觀損傷破壞的觀測研究. 實驗力學, 1999, 14(3):373

    Shang J L, Kong C J, Li T J, et al. Observation and study on meso damage and fracture of rock. J Exp Mech, 1999, 14(3): 373
    [46]
    Wu F T, Thomsen L. Microfracturing and deformation of westerly granite under creep condition. Int J Rock Mech Min Sci Geomech Abstr, 1975, 12(5-6): 167 doi: 10.1016/0148-9062(75)91248-6
    [47]
    姜廣輝. 高溫處理后巖石內部結構演化及波速滲透率關系研究[學位論文]. 北京: 中國礦業大學(北京), 2018

    Jiang G H. Study on the Evolution of Internal Structure and the Relationship between Wave Velocity and Permeability in Rock Subjected to High Temperature Processing [Dissertation]. Beijing: China University of Mining & Technology, Beijing, 2018
    [48]
    吳曉東, 劉均榮, 秦積舜. 熱處理對巖石波速及孔滲的影響. 石油大學學報(自然科學版), 2003, 27(4):70

    Wu X D, Liu J R, Qin J S. Effects of thermal treatment on wave velocity as well as porosity and permeability of rock. J Univ Petroleum China, 2003, 27(4): 70
    [49]
    左建平, 謝和平, 周宏偉, 等. 溫度–拉應力共同作用下砂巖破壞的斷口形貌. 巖石力學與工程學報, 2007, 26(12):2444 doi: 10.3321/j.issn:1000-6915.2007.12.009

    Zuo J P, Xie H P, Zhou H W, et al. Fractography of sandstone failure under temperature-tensile stress coupling effects. Chin J Rock Mech Eng, 2007, 26(12): 2444 doi: 10.3321/j.issn:1000-6915.2007.12.009
    [50]
    趙亞永, 魏凱, 周佳慶, 等. 三類巖石熱損傷力學特性的試驗研究與細觀力學分析. 巖石力學與工程學報, 2017, 36(1):142

    Zhao Y Y, Wei K, Zhou J Q, et al. Laboratory study and micromechanical analysis of mechanical behaviors of three thermally damaged rocks. Chin J Rock Mech Eng, 2017, 36(1): 142
    [51]
    徐小麗, 高峰, 沈曉明, 等. 高溫后花崗巖力學性質及微孔隙結構特征研究. 巖土力學, 2010, 31(6):1752 doi: 10.3969/j.issn.1000-7598.2010.06.012

    Xu X L, Gao F, Shen X M, et al. Research on mechanical characteristics and micropore structure of granite under high-temperature. Rock Soil Mech, 2010, 31(6): 1752 doi: 10.3969/j.issn.1000-7598.2010.06.012
    [52]
    張連英. 高溫作用下泥巖的損傷演化及破裂機理研究[學位論文]. 徐州: 中國礦業大學, 2012

    Zhang L Y. Research on Damage Evoultion and Fracture Mechanisms of Mudstone under High Tempearture [Dissertation]. Xuzhou: China University of Mining and Technology, 2012
    [53]
    Yang L T, Marshall A M, Wanatowski D, et al. Effect of high temperatures on sandstone—a computed tomography scan study. Int J Phys Modell Geo, 2017, 17(2): 75
    [54]
    Liu L Y, Ji H G, Elsworth D, et al. Dual-damage constitutive model to define thermal damage in rock. Int J Rock Mech Min Sci, 2020, 126: 104185 doi: 10.1016/j.ijrmms.2019.104185
    [55]
    許錫昌, 劉泉聲. 高溫下花崗巖基本力學性質初步研究. 巖土工程學報, 2000, 22(3):332 doi: 10.3321/j.issn:1000-4548.2000.03.014

    Xu X C, Liu Q S. A preliminary study on basic mechanical properties for granite at high temperature. Chin J Geotech Eng, 2000, 22(3): 332 doi: 10.3321/j.issn:1000-4548.2000.03.014
    [56]
    劉泉聲, 許錫昌. 溫度作用下脆性巖石的損傷分析. 巖石力學與工程學報, 2000, 19(4):408 doi: 10.3321/j.issn:1000-6915.2000.04.002

    Liu Q S, Xu X C. Damage analysis of brittle rock at high temperature. Chin J Rock Mech Eng, 2000, 19(4): 408 doi: 10.3321/j.issn:1000-6915.2000.04.002
    [57]
    姚孟迪. 熱損傷巖石力學特性及裂紋擴展試驗研究[學位論文]. 武漢: 武漢大學, 2017

    Yao M D. Experimental Study on Mechanical Properties and Crack Propagation of Thermal Damaged Rock [Dissertation]. Wuhan: Wuhan University, 2017
    [58]
    朱元廣, 劉泉聲, 康永水, 等. 考慮溫度效應的花崗巖蠕變損傷本構關系研究. 巖石力學與工程學報, 2011, 30(9):1882

    Zhu Y G, Liu Q S, Kang Y S, et al. Study of creep damage constitutive relationship of granite considering thermal effect. Chin J Rock Mech Eng, 2011, 30(9): 1882
    [59]
    唐世斌, 唐春安, 朱萬成, 等. 熱應力作用下的巖石破裂過程分析. 巖石力學與工程學報, 2006, 25(10):2071 doi: 10.3321/j.issn:1000-6915.2006.10.019

    Tang S B, Tang C A, Zhu W C, et al. Numerical investigation on rock failure process induced by thermal stress. Chin J Rock Mech Eng, 2006, 25(10): 2071 doi: 10.3321/j.issn:1000-6915.2006.10.019
    [60]
    謝衛紅, 李順才, 高峰. 巖石熱損傷-力耦合能量破壞準則研究. 西安科技大學學報, 2007, 27(3):341 doi: 10.3969/j.issn.1672-9315.2007.03.002

    Xie W H, Li S C, Gao F. Energy fracture criterion of thermal damage-mechanical coupling. J Xian Univ Sci Technol, 2007, 27(3): 341 doi: 10.3969/j.issn.1672-9315.2007.03.002
    [61]
    徐小麗. 溫度載荷作用下花崗巖力學性質演化及其微觀機制研究[學位論文]. 徐州: 中國礦業大學, 2008

    Xu X L. Research on the Mechanical Characteristics and Micromechanism of Granite under Temperature Loads [Dissertation]. Xuzhou: China University of Mining and Technology, 2008
    [62]
    張志鎮, 高峰, 徐小麗. 花崗巖力學特性的溫度效應試驗研究. 巖土力學, 2011, 32(8):2346 doi: 10.3969/j.issn.1000-7598.2011.08.017

    Zhang Z Z, Gao F, Xu X L. Experimental study of temperature effect of mechanical properties of granite. Rock Soil Mech, 2011, 32(8): 2346 doi: 10.3969/j.issn.1000-7598.2011.08.017
    [63]
    高美奔. 熱-力作用下硬巖本構模型及其初步運用研究[學位論文]. 成都: 成都理工大學, 2014

    Gao M B. Hard Rock Constitutive Model and Its Preliminary Application under the Thermal-Mechanical Action [Dissertation]. Chengdu: Chengdu University of Technology, 2014
    [64]
    李宏國, 朱大勇, 姚華彥, 等. 溫度作用后大理巖破裂及強度特性試驗研究. 四川大學學報(工程科學版), 2015, 47(增刊1): 53

    Li H G, Zhu D Y, Yao H Y, et al. Experimental study on fracture and strength characteristics of marble after heating. J Sichuan Univ (Eng Sci Ed), 2015, 47(Suppl 1): 53
    [65]
    李天斌, 高美奔, 陳國慶, 等. 硬脆性巖石熱-力-損傷本構模型及其初步運用. 巖土工程學報, 2017, 39(8):1477 doi: 10.11779/CJGE201708015

    Li T B, Gao M B, Chen G Q, et al. A thermal-mechanical-damage constitutive model for hard brittle rocks and its preliminary application. Chin J Geotech Eng, 2017, 39(8): 1477 doi: 10.11779/CJGE201708015
    [66]
    王芝銀, 王思敬, 楊志法. 巖石大變形分析的流形方法. 巖石力學與工程學報, 1997, 16(5):399 doi: 10.3321/j.issn:1000-6915.1997.05.001

    Wang Z Y, Wang S J, Yang Z F. Manifold method in analysis of large deformation for rock. Chin J Rock Mech Eng, 1997, 16(5): 399 doi: 10.3321/j.issn:1000-6915.1997.05.001
    [67]
    楊天鴻, 李連崇, 朱萬成, 等. 基于數字圖像技術巖石溫度滲流應力耦合破壞機制的數值模擬初探//第九屆全國巖石力學與工程學術大會. 沈陽, 2006: 335

    Yang T H, Li L C, Zhu W C, et al. Study of fracture propagation in fractured rocks under the effects of coupled thermal-hydrologic-mechanical(THM) using digital image technology processing//The 9th National Symposium on rock mechanics and engineering. Shenyang, 2006: 335
    [68]
    唐世斌, 唐春安, 梁正召, 等. 熱沖擊作用下的陶瓷材料破裂過程數值分析. 復合材料學報, 2008, 25(2):115 doi: 10.3321/j.issn:1000-3851.2008.02.020

    Tang S B, Tang C A, Liang Z Z, et al. Failure process analysis of ceramic materials subjected to thermal shock. Acta Mater Compos Sin, 2008, 25(2): 115 doi: 10.3321/j.issn:1000-3851.2008.02.020
    [69]
    Tang S B, Zhang H, Tang C A, et al. Numerical model for the cracking behavior of heterogeneous brittle solids subjected to thermal shock. Int J Solids Struct, 2016, 80: 520 doi: 10.1016/j.ijsolstr.2015.10.012
    [70]
    張帆. 冷沖擊下高溫巖石物理力學特性研究[學位論文]. 大連: 大連理工大學, 2020

    Zhang F. Physical and Mechanical Properties of High-Temperature Rocks after Different Cooling Treatments [Dissertation]. Dalian: Dalian University of Technology, 2020
    [71]
    熊貴明, 郤保平, 吳陽春, 等. 熱沖擊作用下花崗巖溫度場分布規律數值模擬研究. 太原理工大學學報, 2018, 49(6):820

    Xiong G M, Xi B P, Wu Y C, et al. Numerical study on distribution of temperature field of dry hot rock under hot shock. J Taiyuan Univ Technol, 2018, 49(6): 820
    [72]
    Yang Z, Yang S Q, Chen M. Peridynamic simulation on fracture mechanical behavior of granite containing a single fissure after thermal cycling treatment. Comput Geotech, 2020, 120: 103414 doi: 10.1016/j.compgeo.2019.103414
    [73]
    李雪. 溫度和應力條件下北山裂隙性花崗質巖石抗剪機理實驗與數值模擬研究[學位論文]. 北京: 中國地質大學(北京), 2017

    Li X. Particle Mechanics Modeling of Thermal Effects on Shear Behavior of Granitic Fracture Rocks in Beishan, Gansu Province [Dissertation]. Beijing: China University of Geosciences, 2017
    [74]
    李瑋樞. 高溫花崗巖水冷破裂模式與水壓裂縫擴展規律研究[學位論文]. 濟南: 山東大學, 2020

    Li W S. Study on Water-Cooling Cracking Modes and Hydraulic Fracture Propagation Law of High-Temperature Granite [Dissertation]. Jinan: Shandong University, 2020
    [75]
    Xu Z Y, Li T B, Chen G Q, et al. The grain-based model numerical simulation of unconfined compressive strength experiment under thermal-mechanical coupling effect. KSCE J Civ Eng, 2018, 22(8): 2764 doi: 10.1007/s12205-017-1228-z
    [76]
    Zhao Z H. Thermal influence on mechanical properties of granite: A microcracking perspective. Rock Mech Rock Eng, 2016, 49(3): 747 doi: 10.1007/s00603-015-0767-1
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (1384) PDF downloads(161) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频