Citation: | XIONG Min, SHI Guan-yong, TIAN Lei, LIU Chong-wei, CAO Cai-fang, ZHANG Zhi-hui, XU Zhi-feng. Preparation of metallic arsenic from calcium arsenate by carbon thermal roasting reduction[J]. Chinese Journal of Engineering, 2022, 44(5): 886-893. doi: 10.13374/j.issn2095-9389.2020.12.14.002 |
[1] |
Jr J V B, Brown P W. The stabilities of calcium arsenates at 23±1 ℃. J Hazard Mater, 1999, 69(2): 197 doi: 10.1016/S0304-3894(99)00105-3
|
[2] |
Long G, Peng Y J, Bradshaw D. A review of copper-arsenic mineral removal from copper concentrates. Miner Eng, 2012, 36-38: 179 doi: 10.1016/j.mineng.2012.03.032
|
[3] |
Lee P K, Yu S, Jeong Y J, et al. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea. Chemosphere, 2019, 217: 183 doi: 10.1016/j.chemosphere.2018.11.010
|
[4] |
Leist M, Casey R J, Caridi D. The fixation and leaching of cement stabilized arsenic. Waste Manag, 2003, 23(4): 353 doi: 10.1016/S0956-053X(02)00116-2
|
[5] |
袁永鋒, 劉素紅. 底吹連續煉銅過程中砷的走向及控制. 中國有色冶金, 2020, 49(2):37
Yuan Y F, Liu S H. Distribution and removal of arsenic in the process of bottom-blowing continuous copper smelting. China Nonferrous Metall, 2020, 49(2): 37
|
[6] |
賈海. 高砷冶金廢料的回收與綜合利用[學位論文]. 長沙: 中南大學, 2013
Jia H. Recycling and Comprehensive Utilization of Metallurgical Waste with High Arsenic Content [Dissertation]. Changsha: Central South University, 2013
|
[7] |
Liu G, Shi Y, Guo G L, et al. Soil pollution characteristics and systemic environmental risk assessment of a large-scale arsenic slag contaminated site. J Clean Prod, 2020, 251: 119721 doi: 10.1016/j.jclepro.2019.119721
|
[8] |
Dutré V, Vandecasteele C. Solidification/stabilisation of arsenic-containing waste: Leach tests and behaviour of arsenic in the leachate. Waste Manag, 1995, 15(1): 55 doi: 10.1016/0956-053X(95)00002-H
|
[9] |
Dutré V, Vandecasteele C. Solidification/stabilisation of hazardous arsenic containing waste from a copper refining process. J Hazard Mater, 1995, 40(1): 55 doi: 10.1016/0304-3894(94)00080-Z
|
[10] |
Dutré V, Vandecasteele C. An evaluation of the solidification/stabilisation of industrial arsenic containing waste using extraction and semi-dynamic leach tests. Waste Manag, 1996, 16(7): 625 doi: 10.1016/S0956-053X(97)00003-2
|
[11] |
Vandecasteele C, Dutré V, Geysen D, et al. Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic. Waste Manag, 2002, 22(2): 143
|
[12] |
Choi W H, Lee S R, Park J Y. Cement based solidification/stabilization of arsenic-contaminated mine tailings. Waste Manag, 2009, 29(5): 1766 doi: 10.1016/j.wasman.2008.11.008
|
[13] |
Akhter H, Cartledge F K, Roy A, et al. Solidification/stabilization of arsenic salts: Effects of long cure times. J Hazard Mater, 1997, 52(2-3): 247 doi: 10.1016/S0304-3894(96)01811-0
|
[14] |
Singh T S, Pant K K. Solidification/stabilization of arsenic containing solid wastes using Portland cement, fly ash and polymeric materials. J Hazard Mater, 2006, 131(1-3): 29 doi: 10.1016/j.jhazmat.2005.06.046
|
[15] |
Yoon I H, Moon D H, Kim K W, et al. Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. J Environ Manag, 2010, 91(11): 2322 doi: 10.1016/j.jenvman.2010.06.018
|
[16] |
Zhao Z W, Song Y X, Min X B, et al. XPS and FTIR studies of sodium arsenate vitrification by cullet. J Non Cryst Solids, 2016, 452: 238 doi: 10.1016/j.jnoncrysol.2016.08.028
|
[17] |
Zhao Z W, Chai L Y, Peng B, et al. Arsenic vitrification by copper slag based glass: Mechanism and stability studies. J Non Cryst Solids, 2017, 466-467: 21 doi: 10.1016/j.jnoncrysol.2017.03.039
|
[18] |
徐建兵, 沈強華, 陳雯, 等. 含砷廢渣處理現狀及對策. 礦冶, 2017, 26(3):82 doi: 10.3969/j.issn.1005-7854.2017.03.018
Xu J B, Shen Q H, Chen W, et al. The present situation and the countermeasure of the processing of arsenic residues. Min Metall, 2017, 26(3): 82 doi: 10.3969/j.issn.1005-7854.2017.03.018
|
[19] |
陸曉陽. 含砷廢渣處理技術的現狀與進展. 現代鹽化工, 2018, 45(5):87 doi: 10.3969/j.issn.1005-880X.2018.05.041
Lu X Y. The status quo and progress of arsenic-containing waste residue treatment technology. Mod Salt Chem Ind, 2018, 45(5): 87 doi: 10.3969/j.issn.1005-880X.2018.05.041
|
[20] |
盧紅波. As2O3真空碳熱還原制備粗金屬砷的熱力學研究. 有色金屬(冶煉部分), 2012(10):55
Lu H B. Thermodynamic analysis on crude metal arsenic preparation by arsenic trioxide carbothermic reduction in vacuum. Nonferrous Met (Extr Metall)
|
[21] |
李學鵬. 直流電弧爐制備金屬砷試驗研究. 礦冶, 2012, 21(3):56 doi: 10.3969/j.issn.1005-7854.2012.03.015
Li X P. Experiment study on arsenic preparation by dc furnace. Min Metall, 2012, 21(3): 56 doi: 10.3969/j.issn.1005-7854.2012.03.015
|
[22] |
潘崇發. 提高金屬砷質量的有效途徑. 有色金屬(冶煉部分), 1994(2):32
Pan C F. An effective way to improve the quality of metallic arsenic. Nonferrous Met (Extr Metall)
|
[23] |
黃自力, 劉緣緣, 陶青英, 等. 石灰沉淀法除砷的影響因素. 環境工程學報, 2012, 6(3):734
Huang Z L, Liu Y Y, Tao Q Y, et al. Influencing factors of arsenic removal by lime precipitation. Chin J Environ Eng, 2012, 6(3): 734
|
[24] |
張華. 砷酸鈣鹽的溶解度和穩定性研究[學位論文]. 桂林: 桂林工學院, 2005
Zhang H. Study on the solubility and stability of calcium arsenate [Dissertation]. Guilin: Guilin Institute of Technology, 2005
|
[25] |
劉輝利, 朱義年. CO2對砷酸鈣穩定性影響的熱力學分析. 環境保護科學, 2006, 32(3):7 doi: 10.3969/j.issn.1004-6216.2006.03.003
Liu H L, Zhu Y N. Thermodynamic analysis of the CO2 effects on the stability of calcium arsenates. Environ Prot Sci, 2006, 32(3): 7 doi: 10.3969/j.issn.1004-6216.2006.03.003
|
[26] |
Bothe J V, Brown P W. Arsenic immobilization by calcium arsenate formation. Environ Sci Technol, 1999, 33(21): 3806 doi: 10.1021/es980998m
|
[27] |
王廣, 薛慶國, 沈穎峰, 等. 硼鐵精礦的碳熱還原動力學. 工程科學學報, 2016, 38(5):623
Wang G, Xue Q G, Shen Y F, et al. Carbothermic reduction kinetics of boron-bearing iron concentrate. Chin J Eng, 2016, 38(5): 623
|
[28] |
胡榮祖, 高勝利, 趙鳳起. 熱分析動力學. 2版. 北京: 科學出版社, 2008: 20
Hu R Z, Gao S L, Zhao F Q. Thermal Analysis Kinetics. 2nd ed. Beijing: Science Press, 2008: 20
|