<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
HU Xiao-chuan, DING Xue-zheng, SU Guo-shao, LIAO Man-ping. Effect of cleavage characteristics of mineral grains on the failure process of hard rock based on UDEC-GBM modeling[J]. Chinese Journal of Engineering, 2022, 44(7): 1160-1170. doi: 10.13374/j.issn2095-9389.2020.12.10.002
Citation: HU Xiao-chuan, DING Xue-zheng, SU Guo-shao, LIAO Man-ping. Effect of cleavage characteristics of mineral grains on the failure process of hard rock based on UDEC-GBM modeling[J]. Chinese Journal of Engineering, 2022, 44(7): 1160-1170. doi: 10.13374/j.issn2095-9389.2020.12.10.002

Effect of cleavage characteristics of mineral grains on the failure process of hard rock based on UDEC-GBM modeling

doi: 10.13374/j.issn2095-9389.2020.12.10.002
More Information
  • Corresponding author: E-mail: guoshaosu@gxu.edu.cn
  • Received Date: 2020-12-10
    Available Online: 2021-03-02
  • Publish Date: 2022-07-01
  • Based on the UDEC (Universal distinct element code) modeling and grain-based model (UDEC-GBM), the effects of mineral’s (e.g., feldspar) cleavage angle, the confining effect of the cleavage angle and cleavage spacing on mechanical properties, microcracking process and mechanism of hard rocks, and the resulting problems in engineering were investigated in the present study. Numerical results show that: (1) Mineral cleavage has a considerable angle effect. As the cleavage angle increases from 0° to 90°, the elastic modulus, uniaxial compressive strength, and post-peak characteristics of the rock are affected. The total number of transgranular cracks is obviously affected, which is mainly reflected by the increase in the number of feldspar tensile cracks and the number of feldspar shear cracks increases to a maximum at 60° and then decreases, and the number of quartz tensile cracks changes considerably. In general, the number of transgranular cracks increases, while the number of intergranular cracks decreases. However, tensile and intergranular cracking dominate the cracking process. (2) The cleavage effect is affected by the confining pressure. The confining pressure will cause the number and proportion of intergranular cracks and transgranular cracks to change. However, the confining pressure at different angles has different effects on the number and proportion of intergranular cracks and transgranular cracks. (3) As the cleavage spacing increases from 2 to 4 mm, the number of transgranular cracks increases and the number of intergranular cracks decreases. However, the ratio of the total shear and tensile cracks remains constant, indicating that microscopic tensile and shear cracking mechanisms are almost unaffected. In addition, when the proportion of minerals with cleavage characteristics is high and the type of mineral has a considerable influence on the rock properties, the influence of cleavage characteristics on rock failures, such as spalling and rockburst, should be given attention.

     

  • loading
  • [1]
    錢七虎. 地下工程建設安全面臨的挑戰與對策. 巖石力學與工程學報, 2012, 31(10):1945 doi: 10.3969/j.issn.1000-6915.2012.10.001

    Qian Q H. Challenges faced by underground projects construction safety and countermeasures. Chin J Rock Mech Eng, 2012, 31(10): 1945 doi: 10.3969/j.issn.1000-6915.2012.10.001
    [2]
    Cai M, Kaiser P K, Tasaka Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int J Rock Mech Min Sci, 2004, 41(5): 833 doi: 10.1016/j.ijrmms.2004.02.001
    [3]
    Martin C D, Christiansson R, S?derh?ll J. Rock Stability Considerations for Siting and Constructing a KBS-3 Repository: Based on Experiences from Aespoe HRL, AECL's URL, Tunnelling and Mining. Stockholm: Swedish Nuclear Fuel and Waste Management Co., 2001
    [4]
    Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr, 1994, 31(6): 643 doi: 10.1016/0148-9062(94)90005-1
    [5]
    馮夏庭, 陳炳瑞, 張傳慶, 等. 巖爆孕育過程的機制、預警與動態調控. 北京: 科學出版社, 2013

    Feng X T, Chen B R, Zhang C Q, et al. Mechanism, Warning and Dynamic Control of Rockburst Development Processes. Beijing: Science Press, 2013
    [6]
    Diederichs M S, Kaiser P K, Eberhardt E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int J Rock Mech Min Sci, 2004, 41(5): 785 doi: 10.1016/j.ijrmms.2004.02.003
    [7]
    Potyondy D. A grain-based model for rock: approaching the true microstructure // Proceedings of Rock Mechanics in the Nordic Countries. Kongsberg, 2010: 9
    [8]
    蔣明鏡, 白閏平, 劉靜德, 等. 巖石微觀顆粒接觸特性的試驗研究. 巖石力學與工程學報, 2013, 32(6):1121 doi: 10.3969/j.issn.1000-6915.2013.06.005

    Jiang M J, Bai R P, Liu J D, et al. Experimental study of inter-granular particles bonding behaviors for rock microstructure. Chin J Rock Mech Eng, 2013, 32(6): 1121 doi: 10.3969/j.issn.1000-6915.2013.06.005
    [9]
    Peng J, Wong L N Y, Teh C I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks. J Geophys Res Solid Earth, 2017, 122(2): 1054 doi: 10.1002/2016JB013469
    [10]
    Gao F Q, Stead D. The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int J Rock Mech Min Sci, 2014, 68: 1 doi: 10.1016/j.ijrmms.2014.02.003
    [11]
    賀靜. 碎屑巖薄片鑒定指南. 北京: 石油工業出版社, 2019

    He J. Clastic Rock Flake Identification Guide. Beijing: Petroleum Industry Press, 2019
    [12]
    Lim S S, Martin C D, ?kesson U. In-situ stress and microcracking in granite cores with depth. Eng Geol, 2012, 147-148: 1 doi: 10.1016/j.enggeo.2012.07.006
    [13]
    Wang X, Cai M. A comprehensive parametric study of grain-based models for rock failure process simulation. Int J Rock Mech Min Sci, 2019, 115: 60 doi: 10.1016/j.ijrmms.2019.01.008
    [14]
    Haimson B, Chang C. A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. Int J Rock Mech Min Sci, 2000, 37(1-2): 285 doi: 10.1016/S1365-1609(99)00106-9
    [15]
    陶明, 汪軍, 李占文, 等. 沖擊荷載下花崗巖層裂斷口細–微觀試驗研究. 巖石力學與工程學報, 2019, 38(11):2172

    Tao M, Wang J, Li Z W, et al. Meso-and micro-experimental research on the fracture of granite spallation under impact loads. Chin J Rock Mech Eng, 2019, 38(11): 2172
    [16]
    Abdelaziz A, Zhao Q, Grasselli G. Grain based modelling of rocks using the combined finite-discrete element method. Comput Geotech, 2018, 103: 73 doi: 10.1016/j.compgeo.2018.07.003
    [17]
    Itasca Consulting Group Inc. UDEC (niversal Distinct Element Code). Version 6.0. Mineapolis, Itasca, 2014
    [18]
    Wang X, Cai M. Modeling of brittle rock failure considering inter- and intra-grain contact failures. Comput Geotech, 2018, 101: 224 doi: 10.1016/j.compgeo.2018.04.016
    [19]
    Gao F Q, Stead D, Elmo D. Numerical simulation of microstructure of brittle rock using a grain-breakable distinct element grain-based model. Comput Geotech, 2016, 78: 203 doi: 10.1016/j.compgeo.2016.05.019
    [20]
    Cho N, Martin C D, Sego D C. A clumped particle model for rock. Int J Rock Mech Min Sci, 2007, 44(7): 997 doi: 10.1016/j.ijrmms.2007.02.002
    [21]
    Yoon J. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci, 2007, 44(6): 871 doi: 10.1016/j.ijrmms.2007.01.004
    [22]
    梁正召, 唐春安, 李厚祥, 等. 單軸壓縮下橫觀各向同性巖石破裂過程的數值模擬. 巖土力學, 2005, 26(1):57 doi: 10.3969/j.issn.1000-7598.2005.01.012

    Liang Z Z, Tang C A, Li H X, et al. A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression. Rock Soil Mech, 2005, 26(1): 57 doi: 10.3969/j.issn.1000-7598.2005.01.012
    [23]
    Gong F Q, Luo Y, Li X B, et al. Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels. Tunn Undergr Space Technol, 2018, 81: 413 doi: 10.1016/j.tust.2018.07.035
    [24]
    Duan K, Kwok C Y, Ma X. DEM simulations of sandstone under true triaxial compressive tests. Acta Geotech, 2017, 12(3): 495 doi: 10.1007/s11440-016-0480-6
    [25]
    陳衛忠, 呂森鵬, 郭小紅, 等. 基于能量原理的卸圍壓試驗與巖爆判據研究. 巖石力學與工程學報, 2009, 28(8):1530 doi: 10.3321/j.issn:1000-6915.2009.08.003

    Chen W Z, Lu S P, Guo X H, et al. Research on unloading confining pressure tests and rockburst criterion based on energy theory. Chin J Rock Mech Eng, 2009, 28(8): 1530 doi: 10.3321/j.issn:1000-6915.2009.08.003
    [26]
    胡小川, 蘇國韶, 陳冠言, 等. 深埋隧洞硬巖板裂化過程試驗研究. 巖土工程學報, 2020, 42(12):2271

    Hu X C, Su G S, Chen G Y, et al. Experimental study on slabbing process of hard rock in deep tunnels. Chin J Geotech Eng, 2020, 42(12): 2271
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(26)  / Tables(5)

    Article views (762) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频