Citation: | XIANG Ting, ZHANG Ming-rui, LI Huan, GAO Ying, WU Shi-pin, LOU Li-yan. Effect of cold wire position on the welding process in twin-arc integrated cold wire hybrid welding[J]. Chinese Journal of Engineering, 2021, 43(11): 1474-1481. doi: 10.13374/j.issn2095-9389.2020.12.10.001 |
[1] |
陳連生. 焊接生產現狀與焊接技術的發展研究. 有色金屬文摘, 2015, 30(2):46
Chen L S. Discussion on the production status and development of welding technology. Nonferrous Met Abstr, 2015, 30(2): 46
|
[2] |
Tusek J. Raising arc welding productivity. Weld Rev Int, 1996, 15(3): 102
|
[3] |
?berg A E, ?strand E. Improved productivity by reduced variation in gas metal arc welding (GMAW). Int J Adv Manuf Technol, 2017, 92(1-4): 1027 doi: 10.1007/s00170-017-0214-4
|
[4] |
張錦剛, 王海燕, 王茜, 等. 管線鋼高效焊接技術的研究現狀及前景分析. 熱加工工藝, 2018, 47(3):18
Zhang J G, Wang H Y, Wang X, et al. Research status and prospect of high efficient welding technology for pipeline steel. Hot Work Technol, 2018, 47(3): 18
|
[5] |
Liu L M, Hu C H, Yu S B, et al. A triple-wire indirect arc welding method with high melting efficiency of base metal. J Manuf Process, 2019, 44: 252 doi: 10.1016/j.jmapro.2019.05.022
|
[6] |
張坤, 江海濤, 孟強, 等. 焊接速度對機器人攪拌摩擦焊AA7B04鋁合金接頭組織和力學性能的影響. 工程科學學報, 2018, 40(12):1525
Zhang K, Jiang H T, Meng Q, et al. Effect of the welding speed on the microstructure and the mechanical properties of robotic friction stir welded AA7B04 aluminum alloy. Chin J Eng, 2018, 40(12): 1525
|
[7] |
Kah P, Suoranta R, Martikainen J. Advanced gas metal arc welding processes. Int J Adv Manuf Technol, 2013, 67: 655 doi: 10.1007/s00170-012-4513-5
|
[8] |
Zhao Y Y, Lee P S, Chung H. Effect of pulsing parameters on drop transfer dynamics and heat transfer behavior in pulsed gas metal arc welding. Int J Heat Mass Transf, 2019, 129: 1110 doi: 10.1016/j.ijheatmasstransfer.2018.10.037
|
[9] |
Xu Y L, Lv N, Fang G, et al. Welding seam tracking in robotic gas metal arc welding. J Mater Process Technol, 2017, 248: 18 doi: 10.1016/j.jmatprotec.2017.04.025
|
[10] |
Sproesser G, Chang Y J, Pittner A, et al. Energy efficiency and environmental impacts of high power gas metal arc welding. Int J Adv Manuf Technol, 2017, 91(9-12): 3503 doi: 10.1007/s00170-017-9996-7
|
[11] |
Mohammadijoo M, Collins L, Henein H, et al. Evaluation of cold wire addition effect on heat input and productivity of tandem submerged arc welding for low-carbon microalloyed steels. Int J Adv Manuf Technol, 2017, 92(1-4): 817 doi: 10.1007/s00170-017-0150-3
|
[12] |
朱志明, 符平坡, 楊中宇, 等. 變極性電弧焊接的電流換向過程影響因素試驗研究. 工程科學學報, 2019, 41(4):505
Zhu Z M, Fu P P, Yang Z Y, et al. Experimental research on factors influencing the current commutation process of variable-polarity arc welding. Chin J Eng, 2019, 41(4): 505
|
[13] |
Arita H, Morimoto T, Nagaoka S, et al. Development of advanced 3-electrode MAG high-speed horizontal fillet welding process. Weld World, 2009, 53(5-6): 35 doi: 10.1007/BF03266713
|
[14] |
Yokota Y, Shimizu H, Nagaoka S, et al. Development and application of the 3-electrode MAG high-speed horizontal fillet welding process. Weld World, 2012, 56(1-2): 43 doi: 10.1007/BF03321144
|
[15] |
Xu C, Hua X M, Ye D J, et al. An improved simulation model for three-wire gas metal arc welding. Int J Adv Manuf Technol, 2017, 90(5-8): 1447 doi: 10.1007/s00170-016-9419-1
|
[16] |
Gu Y, Hua X M, Ye D J, et al. Numerical simulation of hump suppression in high-speed triple-wire GMAW. Int J Adv Manuf Technol, 2017, 89: 727 doi: 10.1007/s00170-016-9119-x
|
[17] |
馬曉麗, 徐琛, 王偉成, 等. 三絲焊接參數對電弧形態特征的影響. 上海交通大學學報, 2020, 54(7):682
Ma X L, Xu C, Wang W C, et al. Impact of welding parameters on arc characteristics in triple-wire welding. J Shanghai Jiao Tong Univ, 2020, 54(7): 682
|
[18] |
Fang D S, Liu L M. Analysis of process parameter effects during narrow-gap triple-wire gas indirect arc welding. Int J Adv Manuf Technol, 2017, 88(9-12): 2717 doi: 10.1007/s00170-016-8802-2
|
[19] |
Fang D S, Song G, Liu L M. A novel method of triple-wire gas indirect arc welding. Mater Manuf Process, 2016, 31(3): 352 doi: 10.1080/10426914.2015.1058949
|
[20] |
Liu L M, Fang D S, Song G. Experimental investigation of wire arrangements for narrow-gap triple-wire gas indirect arc welding. Mater Manuf Process, 2016, 31(16): 2136 doi: 10.1080/10426914.2015.1090603
|
[21] |
王富州. 伊薩ICETM集成冷絲埋弧焊. 電焊機, 2016, 46(3):11
Wang F Z. Esab ice saw. Electr Weld Mach, 2016, 46(3): 11
|
[22] |
Hannes Raudsepp. 集成冷絲—埋弧焊新技術. 電焊機, 2015, 45(5):23
Raudsepp H. Integrated cold electrode—latest advancement in Submerged Arc Welding. Electr Weld Mach, 2015, 45(5): 23
|
[23] |
Xiang T, Li H, Wei H L, et al. Effects of filling status of cold wire on the welding process stability in twin-arc integrated cold wire hybrid welding. Int J Adv Manuf Technol, 2016, 83(9-12): 1583 doi: 10.1007/s00170-015-7686-x
|
[24] |
Wu K Y, Cao X W, Yin T, et al. Metal transfer process and properties of double-wire double pulsed gas metal arc welding. J Manuf Process, 2019, 44: 367 doi: 10.1016/j.jmapro.2019.06.019
|
[25] |
Xiang T, Li H, Huang C Q, et al. The metal transfer behavior and the effect of arcing mode on metal transfer process in twin-arc integrated cold wire hybrid welding. Int J Adv Manuf Technol, 2017, 90(1-4): 1043 doi: 10.1007/s00170-016-9451-1
|
[26] |
Xiang T, Li H, Wei H L, et al. Arc characteristics and metal transfer behavior of twin-arc integrated cold wire hybrid welding. Int J Adv Manuf Technol, 2016, 87(9-12): 2653 doi: 10.1007/s00170-016-8663-8
|