Citation: | ZHU Wei-yao, LI Hua, DENG Qing-jun, MA Qi-peng, LIU Ya-jing. Review on mesoscopic flow theory in porous media[J]. Chinese Journal of Engineering, 2022, 44(5): 951-962. doi: 10.13374/j.issn2095-9389.2020.11.30.005 |
[1] |
陶然, 權曉波, 徐建中. 微尺度流動研究中的幾個問題. 工程熱物理學報, 2001, 22(5):575 doi: 10.3321/j.issn:0253-231X.2001.05.015
Tao R, Quan X B, Xu J Z. Several questions in research of micro scale flow. J Eng Thermophys, 2001, 22(5): 575 doi: 10.3321/j.issn:0253-231X.2001.05.015
|
[2] |
陳玉麗, 馬勇, 潘飛, 等. 多尺度復合材料力學研究進展. 固體力學學報, 2018, 39(1):1
Chen Y L, Ma Y, Pan F, et al. Research progress in multi-scale mechanics of composite materials. Chin J Solid Mech, 2018, 39(1): 1
|
[3] |
Zhu W Y, Ma Q P, Song Z Y, et al. The effect of injection pressure on the microscopic migration characteristics by CO2 flooding in heavy oil reservoirs. Energy Sources Part A, 2019: 1
|
[4] |
朱維耀, 黃延章. 多孔介質對氣-液相變過程的影響. 石油勘探與開發, 1988, 15(1):51
Zhu W Y, Huang Y Z. The effect of porous media on gas-liquid phase behavior. Pet Explor Dev, 1988, 15(1): 51
|
[5] |
Ju Y, Gong W B, Chang W, et al. Effects of pore characteristics on water-oil two-phase displacement in non-homogeneous pore structures: A pore-scale lattice Boltzmann model considering various fluid density ratios. Int J Eng Sci, 2020, 154: 103343 doi: 10.1016/j.ijengsci.2020.103343
|
[6] |
Allen M B III, Behie G A, Trangenstein J A. Multiphase Flow in Porous Media. New York: Springer US, 1988
|
[7] |
Wang Q, Chen X, Jha A N, et al. Natural gas from shale formation?The evolution, evidences and challenges of shale gas revolution in United States. Renewable Sustainable Energy Rev, 2014, 30: 1 doi: 10.1016/j.rser.2013.08.065
|
[8] |
朱維耀, 岳明, 劉昀楓, 等. 中國致密油藏開發理論研究進展. 工程科學學報, 2019, 41(9):1103
Zhu W Y, Yue M, Liu Y F, et al. Research progress on tight oil exploration in China. Chin J Eng, 2019, 41(9): 1103
|
[9] |
王小鋒, 朱維耀, 鄧慶軍, 等. 考慮固液分子作用的多孔介質動態網絡模型. 北京科技大學學報, 2014, 36(2):145
Wang X F, Zhu W Y, Deng Q J, et al. Dynamic network model considering solid-liquid molecule interaction in porous media. J Univ Sci Technol Beijing, 2014, 36(2): 145
|
[10] |
朱維耀, 田英愛, 于明旭, 等. 微圓管中流體的微觀流動機制. 科技導報, 2014, 32(27):23 doi: 10.3981/j.issn.1000-7857.2014.27.003
Zhu W Y, Tian Y A, Yu M X, et al. Mechanism of microscopic fluid flow in microtubes. Sci Technol Rev, 2014, 32(27): 23 doi: 10.3981/j.issn.1000-7857.2014.27.003
|
[11] |
李戰華, 崔海航. 微尺度流動特性. 機械強度, 2001, 23(4):476 doi: 10.3321/j.issn:1001-9669.2001.04.017
Li Z H, Cui H H. Characteristics of micro scale flow. J Mech Strength, 2001, 23(4): 476 doi: 10.3321/j.issn:1001-9669.2001.04.017
|
[12] |
錢曉蓉, 沈宏繼. 微流體動力學研究發展與現狀. 航空精密制造技術, 2005, 41(6):11 doi: 10.3969/j.issn.1003-5451.2005.06.004
Qian X R, Shen H J. Developments on hydrokinetic of microfluidic flow. Aviat Precis Manuf Technol, 2005, 41(6): 11 doi: 10.3969/j.issn.1003-5451.2005.06.004
|
[13] |
Wu P Y, Little W A. Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators. Cryogenics, 1983, 23(5): 273 doi: 10.1016/0011-2275(83)90150-9
|
[14] |
Terry S C. A Gas Chromatography System Fabricated on a Silicon Wafer Using Integrated Circuit Technology [Dissertation]. Palo Alto: Stanford University, 1975
|
[15] |
Harley J C, Huang Y F, Bau H H, et al. Gas flow in micro-channels. J Fluid Mech, 1995, 284: 257 doi: 10.1017/S0022112095000358
|
[16] |
Ho C M, Tai Y C. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu Rev Fluid Mech, 1998, 30(1): 579 doi: 10.1146/annurev.fluid.30.1.579
|
[17] |
Barajas A M, Panton R L. The effects of contact angle on two-phase flow in capillary tubes. Int J Multiph Flow, 1993, 19(2): 337 doi: 10.1016/0301-9322(93)90007-H
|
[18] |
Triplett K A, Ghiaasiaan S M, Abdel-Khalik S I, et al. Gas-liquid two-phase flow in microchannels Part I: Two-phase flow patterns. Int J Multiph Flow, 1999, 25(3): 377 doi: 10.1016/S0301-9322(98)00054-8
|
[19] |
鄧慶軍, 朱維耀, 王小鋒, 等. 多孔介質中微觀力的作用及滲流模型. 北京科技大學學報, 2014, 36(4):415
Deng Q J, Zhu W Y, Wang X F, et al. Seepage model considering micro forces in porous media. J Univ Sci Technol Beijing, 2014, 36(4): 415
|
[20] |
Koplik J, Banavar J R, Willemsen J F. Molecular dynamics of fluid flow at solid surfaces. Phys Fluids A, 1989, 1(5): 781
|
[21] |
Zhu W Y, Li B B, Liu Y J, et al. Solid-liquid interfacial effects on residual oil distribution utilizing three-dimensional micro network models. Energies, 2017, 10(12): 2059 doi: 10.3390/en10122059
|
[22] |
Cai Q, Buts A, Seaton N A, et al. A pore network model for diffusion in nanoporous carbons: Validation by molecular dynamics simulation. Chem Eng Sci, 2008, 63(13): 3319 doi: 10.1016/j.ces.2008.03.032
|
[23] |
Wang S, Feng Q, Javadpour F, et al. Multiscale modeling of shale apparent permeability: an integrated study of molecular dynamics and pore network model // SPE Annual Technical Conference and Exhibition. San Antonio, 2017: SPE-187286-MS
|
[24] |
李軼凡. 低表面張力液體下的粗糙表面固液界面邊界滑移的研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2018
Li Y F. Study on Boundary Slip at the Solid-Liquid Interface of the Rough Surfaces Immersed in Liquids with Low Surface Tension [Dissertation]. Harbin: Harbin Institute of Technology, 2018
|
[25] |
Hubbert M K. Darcy’s law and the field equations of the flow of underground fluids. Int Assoc Sci Hydrol Bull, 1957, 2(1): 222
|
[26] |
Allen M B. Basic Mechanics of Oil Reservoir Flows. New York: Springer Press, 1988
|
[27] |
Hu G Q, Li D Q. Multiscale phenomena in microfluidics and nanofluidics. Chem Eng Sci, 2007, 62(13): 3443 doi: 10.1016/j.ces.2006.11.058
|
[28] |
Civan F. A triple-mechanism fractal model with hydraulic dispersion for gas permeation in tight reservoirs // SPE International Petroleum Conference and Exhibition in Mexico. Villahermosa, 2002: SPE-74368-MS
|
[29] |
Roy S, Raju R, Chuang H F, et al. Modeling gas flow through microchannels and nanopores. J Appl Phys, 2003, 93(8): 4870 doi: 10.1063/1.1559936
|
[30] |
李戰華, 鄭旭. 微納米尺度流動實驗研究的問題與進展. 實驗流體力學, 2014, 28(3):1 doi: 10.11729/syltlx20140018
Li Z H, Zheng X. The problems and progress in the experimental study of micro/nano-scale flow. J Exp Fluid Mech, 2014, 28(3): 1 doi: 10.11729/syltlx20140018
|
[31] |
Wang J L, Song H Q, Zhu W Y, et al. Flow characteristics and a permeability model in nanoporous media with solid-liquid interfacial effects. Interpretation, 2017, 5(1): SB1 doi: 10.1190/INT-2016-0009.1
|
[32] |
Keenan J H, Neumann E P. Measurements of friction in a pipe for subsonic and supersonic flow of air. J Appl Mech, 1946, 13(2): A91 doi: 10.1115/1.4009532
|
[33] |
Pfitzner J. Poiseuille and his law. Anaesthesia, 1976, 31(2): 273 doi: 10.1111/j.1365-2044.1976.tb11804.x
|
[34] |
張雪齡, 朱維耀, 蔡強, 等. 考慮固壁作用力的微可壓縮流體納微米圓管流動分析. 北京科技大學學報, 2014, 36(5):569
Zhang X L, Zhu W Y, Cai Q, et al. Analysis of weakly compressible fluid flow in nano /micro-size circular tubes considering solid wall force. J Univ Sci Technol Beijing, 2014, 36(5): 569
|
[35] |
Bonaccurso E, Butt H J, Craig V S. Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system. Phys Rev Lett, 2003, 90(14): 144501 doi: 10.1103/PhysRevLett.90.144501
|
[36] |
Shen W J, Song F Q, Hu X, et al. Experimental study on flow characteristics of gas transport in micro- and nanoscale pores. Sci Rep, 2019, 9: 10196 doi: 10.1038/s41598-019-46430-2
|
[37] |
Ou J, Rothstein J P. Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys Fluids, 2005, 17(10): 103606 doi: 10.1063/1.2109867
|
[38] |
Pak T, Butler I B, Geiger S, et al. Droplet fragmentation: 3D imaging of a previously unidentified pore-scale process during multiphase flow in porous media. PNAS, 2015, 112(7): 1947 doi: 10.1073/pnas.1420202112
|
[39] |
王渝明, 龐顏民, 楊樹鋒, 等. 基于啟動壓力梯度的低滲透砂巖儲層分類研究. 高校地質學報, 2005, 11(4):617 doi: 10.3969/j.issn.1006-7493.2005.04.019
Wang Y M, Pang Y M, Yang S F, et al. Study on classification of low-permealility sandstone reservoirs based on the starting pressure gradient. Geol J China Univ, 2005, 11(4): 617 doi: 10.3969/j.issn.1006-7493.2005.04.019
|
[40] |
Jerauld G R, Salter S J. The effect of pore-structure on hysteresis in relative permeability and capillary pressure: Pore-level modeling. Transp Porous Media, 1990, 5(2): 103 doi: 10.1007/BF00144600
|
[41] |
McDougall S R, Sorbie K S. The impact of wettability on waterflooding: Pore-scale simulation. SPE Reserv Eng, 1995, 10(3): 208 doi: 10.2118/25271-PA
|
[42] |
Wang C, Nguyen N T, Wong T N, et al. Investigation of active interface control of pressure driven two-fluid flow in microchannels. Sens Actuators A, 2007, 133(2): 323 doi: 10.1016/j.sna.2006.06.034
|
[43] |
Datta S S, Ramakrishnan T S, Weitz D A. Mobilization of a trapped non-wetting fluid from a three-dimensional porous medium. Phys Fluids, 2014, 26(2): 022002 doi: 10.1063/1.4866641
|
[44] |
Arif M, Mahmoud M, Zhang Y H, et al. X-ray tomography imaging of shale microstructures: A review in the context of multiscale correlative imaging. Int J Coal Geol, 2021, 233: 103641 doi: 10.1016/j.coal.2020.103641
|
[45] |
鄧慶軍. 大慶油田薩中開發區特高含水期微觀剩余油成因及動用機制研究[學位論文]. 大慶: 東北石油大學, 2015
Deng Q J. Microscale Occurence and Recovery Mechanism of Remaining Oil in Sazhong Area at Extra-High Water Cut Stage of Daqing Field [Dissertation]. Daqing: Northeast Petroleum University, 2015
|
[46] |
Xiong Q R, Baychev T G, Jivkov A P. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. J Contam Hydrol, 2016, 192: 101 doi: 10.1016/j.jconhyd.2016.07.002
|
[47] |
Fatt I. The network model of porous media. Trans AIME, 1956, 207(1): 144 doi: 10.2118/574-G
|
[48] |
Dullien F A L, Lai F S Y, MacDonald I F. Hydraulic continuity of residual wetting phase in porous media. J Colloid Interface Sci, 1986, 109(1): 201 doi: 10.1016/0021-9797(86)90295-X
|
[49] |
Zhang X L, Shi Y T, Kuang S Y, et al. Microscale effects of Bingham-plastic liquid behavior considering electroviscous effects in nano- or microsized circular tubes. Phys Fluids, 2019, 31(2): 022001 doi: 10.1063/1.5068774
|
[50] |
張雪齡, 鄺頌雅, 師渝滔, 等. 致密油納微米孔隙介質非線性滲流特性研究進展. 中國海上油氣, 2019, 31(4):102
Zhang X L, Kuang S Y, Shi Y T, et al. Research progress on the nonlinear seepage characteristics of tight oil in nano-micron porous media. China Offshore Oil Gas, 2019, 31(4): 102
|
[51] |
Xie C Y, Xu K, Mohanty K, et al. Nonwetting droplet oscillation and displacement by viscoelastic fluids. Phys Rev Fluids, 2020, 5(6): 063301 doi: 10.1103/PhysRevFluids.5.063301
|
[52] |
王金勛, 吳曉東, 楊普華, 等. 孔隙網絡模型法計算氣液體系吸吮過程相對滲透率. 天然氣工業, 2003, 23(3):8 doi: 10.3321/j.issn:1000-0976.2003.03.003
Wang J X, Wu X D, Yang P H, et al. Calculating the imbibition relative permeability of a gas-liquid system by pore scale network model. Nat Gas Ind, 2003, 23(3): 8 doi: 10.3321/j.issn:1000-0976.2003.03.003
|
[53] |
韓強, 屈展, 葉正寅. 頁巖多尺度力學特性研究現狀. 應用力學學報, 2018, 35(3):564
Han Q, Qu Z, Ye Z Y. Research status of shale multi-scale mechanical properties. Chin J Appl Mech, 2018, 35(3): 564
|
[54] |
馬勇軍, 王瑞飛. 超低滲淺層砂巖油藏儲層非線性滲流模型. 斷塊油氣田, 2017, 24(4):514
Ma Y J, Wang R F. Non-linear seepage models for sandstone reservoirs of ultra-low permeability and shallow layers. Gas Field, 2017, 24(4): 514
|
[55] |
馬銓崢, 楊勝來, 王君如, 等. 基于啟動壓力梯度的致密油藏非線性滲流模型. 石油化工高等學校學報, 2020, 33(1):36 doi: 10.3969/j.issn.1006-396X.2020.01.007
Ma Q Z, Yang S L, Wang J R, et al. Non-linear seepage model of tight reservoir based on threshold pressure gradient. J Petrochem Univ, 2020, 33(1): 36 doi: 10.3969/j.issn.1006-396X.2020.01.007
|
[56] |
鄧佳. 頁巖氣儲層多級壓裂水平井非線性滲流理論研究[學位論文]. 北京: 北京科技大學, 2015
Deng J. Nonlinear Seepage Theory of Multistage Fractured Horizontal Wells for Shale Gas Reservoirs [Dissertation]. Beijing: University of Science and Technology Beijing, 2015
|
[57] |
黃延章. 低滲透油層非線性滲流特征. 特種油氣藏, 1997, 4(1):9
Huang Y Z. Nonlinear percolation feature in low permeability reservoir. Gas Reservoirs, 1997, 4(1): 9
|
[58] |
姚約東, 葛家理. 低滲透油層非達西滲流規律的研究. 新疆石油地質, 2000, 21(3):213 doi: 10.3969/j.issn.1001-3873.2000.03.010
Yao Y D, Ge J L. Study on non-darcy flow pattern in low permeability oil reservoir. Xinjiang Pet Geol, 2000, 21(3): 213 doi: 10.3969/j.issn.1001-3873.2000.03.010
|
[59] |
楊清立, 楊正明, 王一飛, 等. 特低滲透油藏滲流理論研究. 鉆采工藝, 2007, 30(6):52 doi: 10.3969/j.issn.1006-768X.2007.06.019
Yang Q L, Yang Z M, Wang Y F, et al. Study on flow theory in ultra-low permeability oil reservoir. Drill Prod Technol, 2007, 30(6): 52 doi: 10.3969/j.issn.1006-768X.2007.06.019
|
[60] |
鄧英爾, 劉慈群. 低滲油藏非線性滲流規律數學模型及其應用. 石油學報, 2001, 22(4):72 doi: 10.3321/j.issn:0253-2697.2001.04.014
Deng Y E, Liu C Q. Mathematical model of nonlinear flow law in low permeability porous media and its application. Acta Petrolei Sin, 2001, 22(4): 72 doi: 10.3321/j.issn:0253-2697.2001.04.014
|
[61] |
黃延章, 楊正明, 何英, 等. 低滲透多孔介質中的非線性滲流理論. 力學與實踐, 2013, 35(5):1 doi: 10.6052/1000-0879-13-165
Huang Y Z, Yang Z M, He Y, et al. Nonlinear porous flow in low permeability porous media. Mech Eng, 2013, 35(5): 1 doi: 10.6052/1000-0879-13-165
|
[62] |
Vinay G, Wachs A, Agassant J F. Numerical simulation of weakly compressible Bingham flows: The restart of pipeline flows of waxy crude oils. J Non Newton Fluid Mech, 2006, 136(2-3): 93 doi: 10.1016/j.jnnfm.2006.03.003
|
[63] |
向大平, 鄧小剛, 毛枚良. 低馬赫數流動數值模擬方法的研究. 空氣動力學學報, 2002, 20(4):373 doi: 10.3969/j.issn.0258-1825.2002.04.001
Xiang D P, Deng X G, Mao M L. Study on a novel method for low Mach number flows computation. Acta Aerodyn Sin, 2002, 20(4): 373 doi: 10.3969/j.issn.0258-1825.2002.04.001
|
[64] |
向大平, 鄧小剛, 毛枚良. 微可壓縮模型(SCM)與可壓縮NS方程數值計算對比研究. 空氣動力學學報, 2005, 23(2):195 doi: 10.3969/j.issn.0258-1825.2005.02.012
Xiang D P, Deng X G, Mao M L. Study of slightly compressible model (SCM) and compressible N-S equations on low Mach number flow computation. Acta Aerodyn Sin, 2005, 23(2): 195 doi: 10.3969/j.issn.0258-1825.2005.02.012
|
[65] |
劉慈群. 非牛頓流體的廣義Maxwell模型及其解. 力學與實踐, 1995, 17(2):21
Liu C Q. Generalized Maxwell Model of Non-Newtonian Fluid and Its Solution. Mech Pract, 1995, 17(2): 21
|
[66] |
黃耀英, 沈振中, 吳中如. 不同應力分量下廣義開爾文模型粘性系數探討. 應用力學學報, 2007, 24(4):588 doi: 10.3969/j.issn.1000-4939.2007.04.019
Huang Y Y, Shen Z Z, Wu Z R. Generalized kelvin model under different stress state. Chin J Appl Mech, 2007, 24(4): 588 doi: 10.3969/j.issn.1000-4939.2007.04.019
|
[67] |
栗雪娟, 歐陽潔, 蔣濤, 等. 模擬微可壓粘彈性流體的WCCBSSU方法. 計算力學學報, 2011, 28(4):590 doi: 10.7511/jslx201104017
Li X J, Ouyang J, Jiang T, et al. A WCCBSSU method for solving weakly compressible visco-elastic flow problems. Chin J Comput Mech, 2011, 28(4): 590 doi: 10.7511/jslx201104017
|
[68] |
Venerus D C. Laminar capillary flow of compressible viscous fluids. J Fluid Mech, 2006, 555: 59 doi: 10.1017/S0022112006008755
|
[69] |
劉學利, 彭小龍, 杜志敏, 等. 油水兩相流Darcy-Stokes模型. 西南石油大學學報, 2007, 29(6):89
Liu X L, Peng X L, Du Z M, et al. Oil water two phases flow darcy-strokes mode. J Southwest Pet Univ, 2007, 29(6): 89
|
[70] |
萬釗. 微可壓縮模型預處理求解方法研究[學位論文]. 綿陽: 中國空氣動力研究與發展中心, 2010
Wan Z. Preconditioning Technique in Slighly Compressible Model [Dissertation]. Mianyang: China Aerodynamics Research and Development Center, 2010
|
[71] |
張雪齡. 考慮液—固界面作用的微可壓縮流體的滲流理論研究[學位論文]. 北京: 北京科技大學, 2015
Zhang X L. Percolation Theory Research of Weakly Compressible Fluid Flow Considering Wall-Liquid Interaction [Dissertation]. Beijing: University of Science and Technology Beijing, 2015
|
[72] |
Liu C, Li Z G. Flow regimes and parameter dependence in nanochannel flows. Phys Rev E, 2009, 80(3): 036302 doi: 10.1103/PhysRevE.80.036302
|
[73] |
Yang C, Li D Q. Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels. J Colloid Interface Sci, 1997, 194(1): 95 doi: 10.1006/jcis.1997.5091
|
[74] |
朱維耀, 王亞震, 岳明, 等. 考慮空間位形力作用的微米軟顆粒溶液微圓管流動規律. 工程科學學報, 2019, 41(10):1266
Zhu W Y, Wang Y Z, Yue M, et al. Micro circular pipe flow in micron-sized soft particle solution considering the effect of spatial configuration force. Chin J Eng, 2019, 41(10): 1266
|
[75] |
龍運前, 朱維耀, 劉啟鵬, 等. 納微米聚合物顆粒分散體系微孔濾膜流動特征. 西南石油大學學報(自然科學版), 2015, 37(6):144
Long Y Q, Zhu W Y, Liu Q P, et al. Flow characteristics of nano/micron-sized polymer particles aqueous solution through microporous membrane. J Southwest Pet Univ Sci Technol, 2015, 37(6): 144
|
[76] |
朱維耀, 馬千, 鄧佳, 等. 納微米級孔隙氣體流動數學模型及應用. 北京科技大學學報, 2014, 36(6):709
Zhu W Y, Ma Q, Deng J, et al. Mathematical model and application of gas flow in nano-micron pores. J Univ Sci Technol Beijing, 2014, 36(6): 709
|
[77] |
Hazlett R D. Simulation of capillary-dominated displacements in microtomographic images of reservoir rocks. Transp Porous Media, 1995, 20(1-2): 21 doi: 10.1007/BF00616924
|
[78] |
Coles M E, Hazlett R D, Spanne P, et al. Pore level imaging of fluid transport using synchrotron X-ray microtomography. J Petroleum Sci Eng, 1998, 19(1-2): 55 doi: 10.1016/S0920-4105(97)00035-1
|
[79] |
Joshi M Y. A Class of Stochastic Models for Porous Media[Dissertation]. Lawrence: University of Kansas, 1974.
|
[80] |
Quiblier J A. A new three-dimensional modeling technique for studying porous media. J Colloid Interface Sci, 1984, 98(1): 84 doi: 10.1016/0021-9797(84)90481-8
|
[81] |
徐模. 數字巖心及孔隙網絡模型的構建方法研究[學位論文]. 成都: 西南石油大學, 2017
Xu M. Method of Digital Core Construction and Pore Network Extraction[Dissertation]. Chengdu: Southwest Petroleum University, 2017
|
[82] |
Hazlett R D. Statistical characterization and stochastic modeling of pore networks in relation to fluid flow. Math Geol, 1997, 29(6): 801 doi: 10.1007/BF02768903
|
[83] |
趙秀才, 姚軍, 陶軍, 等. 基于模擬退火算法的數字巖心建模方法. 高校應用數學學報A輯, 2007, 22(2):127 doi: 10.3969/j.issn.1000-4424.2007.02.001
Zhao X C, Yao J, Tao J, et al. A method of constructing digital core by simulated annealing algorithm. Appl Math A J Chin Univ (Sera)
|
[84] |
Hidajat I, Rastogi A, Singh M, et al. Transport properties of porous media reconstructed from thin-sections. SPE J, 2002, 7(1): 40 doi: 10.2118/77270-PA
|
[85] |
Wu K J, Dijke M I J, Couples G D, et al. 3D stochastic modelling of heterogeneous porous media-applications to reservoir rocks. Transp Porous Media, 2006, 65(3): 443 doi: 10.1007/s11242-006-0006-z
|
[86] |
胡雪濤, 李允. 隨機網絡模擬研究微觀剩余油分布. 石油學報, 2000, 21(4):46 doi: 10.3321/j.issn:0253-2697.2000.04.009
Hu X T, Li Y. Study of microcosmic distribution of residual oil with stochastic simulation in networks. Acta Petrolei Sin, 2000, 21(4): 46 doi: 10.3321/j.issn:0253-2697.2000.04.009
|
[87] |
Blunt M J, Jackson M D, Piri M, et al. Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv Water Resour, 2002, 25(8-12): 1069 doi: 10.1016/S0309-1708(02)00049-0
|
[88] |
徐守余, 李紅南. 儲集層孔喉網絡場演化規律和剩余油分布. 石油學報, 2003, 24(4):48 doi: 10.3321/j.issn:0253-2697.2003.04.011
Xu S Y, Li H N. Evolvement of reservoir pore-throat-net and remaining oil distribution. Acta Petrolei Sin, 2003, 24(4): 48 doi: 10.3321/j.issn:0253-2697.2003.04.011
|
[89] |
王克文, 孫建孟, 關繼騰, 等. 聚合物驅后微觀剩余油分布的網絡模型模擬. 中國石油大學學報(自然科學版), 2006, 30(1):72
Wang K W, Sun J M, Guan J T, et al. Network model modeling of microcosmic remaining oil distribution after polymer flooding. J China Univ Pet Ed Nat Sci, 2006, 30(1): 72
|
[90] |
姚軍, 陶軍, 李愛芬. 利用三維隨機網絡模型研究油水兩相流動. 石油學報, 2007, 28(2):94 doi: 10.3321/j.issn:0253-2697.2007.02.018
Yao J, Tao J, Li A F. Research on oil-water two-phase flow using 3D random network model. Acta Petrolei Sin, 2007, 28(2): 94 doi: 10.3321/j.issn:0253-2697.2007.02.018
|
[91] |
張鵬偉, 胡黎明, Jay N Meegoda, 等. 基于巖土介質三維孔隙結構的兩相流模型. 巖土工程學報, 2020, 42(1):37
Zhang P W, Hu L M, Meegoda J, et al. Two-phase flow model based on 3D pore structure of geomaterials. Chin J Geotech Eng, 2020, 42(1): 37
|
[92] |
閆偉超, 孫建孟. 微觀剩余油研究現狀分析. 地球物理學進展, 2016, 31(5):2198 doi: 10.6038/pg20160544
Yan W C, Sun J M. Analysis of research present situation of microscopic remaining oil. Prog Geophys, 2016, 31(5): 2198 doi: 10.6038/pg20160544
|
[93] |
王芳芳, 胡海光, 何志雄. 剩余油形成機理與賦存狀態研究綜述. 廣東化工, 2013, 40(3):66 doi: 10.3969/j.issn.1007-1865.2013.03.033
Wang F F, Hu H G, He Z X. Remaining oil forming mechanism of occurrence research. Guangdong Chem Ind, 2013, 40(3): 66 doi: 10.3969/j.issn.1007-1865.2013.03.033
|
[94] |
Li T X, Song H Q, Wang J L, et al. An analytical method for modeling and analysis gas-water relative permeability in nanoscale pores with interfacial effects. Int J Coal Geol, 2016, 159: 71 doi: 10.1016/j.coal.2016.03.018
|
[95] |
Chatenever A, Calhoun J C Jr. Visual examinations of fluid behavior in porous media?part I. J Pet Technol, 1952, 4(6): 149 doi: 10.2118/135-G
|
[96] |
Templeton C C. A study of displacements in microscopic capillaries. J Pet Technol, 1954, 6(7): 37 doi: 10.2118/307-G
|
[97] |
黃延章. 微觀滲流實驗力學及其應用. 北京: 石油工業出版社, 2001
Huang Y Z. Experimental Mechanics of Microscopic Seepage and its Application. Beijing: Petroleum industry press, 2001
|
[98] |
Zhang X L, Zhu W Y, Cai Q, et al. Compressible liquid flow in nano- or micro-sized circular tubes considering wall–liquid Lifshitz–van der Waals interaction. Phys Fluids, 2018, 30(6): 062002 doi: 10.1063/1.5023291
|