Citation: | ZHANG Zhuang-zhuang, WANG Qiang, TANG Hui-qing, XUE Qing-guo. Reaction behavior of the biochar composite briquette in the blast furnace[J]. Chinese Journal of Engineering, 2022, 44(7): 1192-1201. doi: 10.13374/j.issn2095-9389.2020.11.30.002 |
[1] |
蔡九菊. 鋼鐵工業的空氣消耗與廢氣排放. 鋼鐵, 2019, 54(4):1
Cai J J. Air consumption and waste gas emission of steel industry. Iron Steel, 2019, 54(4): 1
|
[2] |
Ariyama T, Sato M. Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works. ISIJ Int, 2006, 46(12): 1736 doi: 10.2355/isijinternational.46.1736
|
[3] |
An R Y, Yu B Y, Li R, et al. Potential of energy savings and CO2 emission reduction in China’s iron and steel industry. Appl Energy, 2018, 226: 862 doi: 10.1016/j.apenergy.2018.06.044
|
[4] |
汪鵬, 姜澤毅, 張欣欣, 等. 中國鋼鐵工業流程結構、能耗和排放長期情景預測. 北京科技大學學報, 2014, 36(12):1683
Wang P, Jiang Z, Zhang X, et al. Long-term scenario forecast of production routes, energy consumption and emissions for Chinese steel industry. J Univ Sci Technol Beijing, 2014, 36(12): 1683
|
[5] |
張文來. 中國高爐煉鐵現狀及未來技術展望. 中國金屬通報, 2019(2):10 doi: 10.3969/j.issn.1672-1667.2019.02.005
Zhang W L. Current situation and future technical prospect of blast furnace ironmaking in China. China Met Bull, 2019(2): 10 doi: 10.3969/j.issn.1672-1667.2019.02.005
|
[6] |
Zhao J, Zuo H B, Wang Y J, et al. Review of green and low-carbon ironmaking technology. Ironmak Steelmak, 2020, 47(3): 296 doi: 10.1080/03019233.2019.1639029
|
[7] |
Florentino-Madiedo L, Díaz-Faes E, Barriocanal C. Reactivity of biomass containing briquettes for metallurgical coke production. Fuel Process Technol, 2019, 193: 212 doi: 10.1016/j.fuproc.2019.05.017
|
[8] |
Cardona L M V, Narita C Y, Takano C, et al. Characterisation of coal-charcoal composite biocoke as a sustainable alternative for ironmaking. Can Metall Q, 2017, 56(2): 190 doi: 10.1080/00084433.2017.1299342
|
[9] |
Zandi M, Martinez-Pacheco M, Fray T A T. Biomass for iron ore sintering. Miner Eng, 2010, 23(14): 1139 doi: 10.1016/j.mineng.2010.07.010
|
[10] |
Kieush L, Yaholnyk M, Boyko M, et al. Study of biomass utilisation in the iron ore sintering. Acta Metall Slovaca, 2019, 25(1): 55 doi: 10.12776/ams.v1i1.1225
|
[11] |
Liu Y R, Shen Y S. CFD study of charcoal combustion in a simulated ironmaking blast furnace. Fuel Process Technol, 2019, 191: 152 doi: 10.1016/j.fuproc.2019.04.004
|
[12] |
Wang C, Mellin P, L?vgren J, et al. Biomass as blast furnace injectant-Considering availability, pretreatment and deployment in the Swedish steel industry. Energy Convers Manag, 2015, 102: 217 doi: 10.1016/j.enconman.2015.04.013
|
[13] |
Mathieson J G, Rogers H, Somerville M A, et al. Reducing net CO2 emissions using charcoal as a blast furnace tuyere injectant. ISIJ Int, 2012, 52(8): 1489 doi: 10.2355/isijinternational.52.1489
|
[14] |
Ahmed H M, Viswanathan N, Bjorkman B. Composite pellets-A potential raw material for iron-making. Steel Res Int, 2014, 85(3): 293 doi: 10.1002/srin.201300072
|
[15] |
Tanaka Y, Ueno T, Okumura K, et al. Reaction behavior of coal rich composite iron ore hot briquettes under load at high temperatures until 1400℃. ISIJ Int, 2011, 51(8): 1240 doi: 10.2355/isijinternational.51.1240
|
[16] |
Mizoguchi H, Suzuki H, Hayashi S. Influence of mixing coal composite iron ore hot briquettes on blast furnace simulated reaction behavior in a packed mixed bed. ISIJ Int, 2011, 51(8): 1247 doi: 10.2355/isijinternational.51.1247
|
[17] |
吳鏗, 齊淵洪, 趙繼偉, 等. 含碳球團的還原性和還原冷卻后的強度. 北京科技大學學報, 2000, 22(2):101 doi: 10.3321/j.issn:1001-053X.2000.02.002
Wu K, Qi Y H, Zhao J W, et al. Reduction and strength of after reduction of cooled pellet contain carbon. J Univ Sci Technol Beijing, 2000, 22(2): 101 doi: 10.3321/j.issn:1001-053X.2000.02.002
|
[18] |
Wang H T, Chu M S, Zhao W, et al. Influence of iron ore addition on metallurgical reaction behavior of iron coke hot briquette. Metall Mater Trans B, 2019, 50(1): 324 doi: 10.1007/s11663-018-1481-7
|
[19] |
Kasai A, Toyota H, Nozawa K, et al. Reduction of reducing agent rate in blast furnace operation by carbon composite iron ore hot briquette. ISIJ Int, 2011, 51(8): 1333 doi: 10.2355/isijinternational.51.1333
|
[20] |
Ueda S, Watanabe K, Yanagiya K, et al. Improvement of reactivity of carbon iron ore composite with biomass char for blast furnace. ISIJ Int, 2009, 49(10): 1505 doi: 10.2355/isijinternational.49.1505
|
[21] |
Mousa E, Lundgren M, ?kvist L S, et al. Reduced carbon consumption and CO2 emission at the blast furnace by use of briquettes containing torrefied sawdust. J Sustain Metall, 2019, 5(3): 391 doi: 10.1007/s40831-019-00229-7
|
[22] |
Tang H Q, Liu S H, Rong T. Preparation of high-carbon metallic briquette for blast furnace application. ISIJ Int, 2019, 59(1): 22 doi: 10.2355/isijinternational.ISIJINT-2018-421
|
[23] |
Yu Z, Liu Z, Tang H Q, et al. Preparation of high-strength biochar composite briquette for blast furnace ironmaking. Metall Res Technol, 2021, 118(1): 109 doi: 10.1051/metal/2020083
|
[24] |
Tang H Q, Yun Z W, Fu X F, et al. Modeling and experimental study of ore-carbon briquette reduction under CO–CO2 atmosphere. Metals, 2018, 8(4): 205 doi: 10.3390/met8040205
|
[25] |
Turkdogan E T. Blast furnace reactions. Metall Trans B, 1978, 9(2): 163
|
[26] |
Tang H, Sun Y J, Rong T. Experimental and numerical investigation of reaction behavior of carbon composite briquette in blast furnace. Metals, 2019, 10(1): 49 doi: 10.3390/met10010049
|
[27] |
Ueda S, Yanagiya K, Watanabe K, et al. Reaction model and reduction behavior of carbon iron ore composite in blast furnace. ISIJ Int, 2009, 49(6): 827 doi: 10.2355/isijinternational.49.827
|
[28] |
Tang H Q, Qi T F, Qin Y Q. Production of low-phosphorus molten iron from high-phosphorus oolitic hematite using biomass char. JOM, 2015, 67(9): 1956 doi: 10.1007/s11837-015-1541-2
|
[29] |
葛慶仁. 氣固反應動力學. 北京: 原子能出版社, 1991
Ge Q. Kinetics of gas-solid reactions. Beijing: Atomic Energy Press, 1991
|
[30] |
Natsui S, Kikuchi T, Suzuki R O. Numerical analysis of carbon monoxide-hydrogen gas reduction of iron ore in a packed bed by an Euler-Lagrange approach. Metall Mater Trans B, 2014, 45(6): 2395 doi: 10.1007/s11663-014-0132-x
|
[31] |
Leimalm U, Forsmo S, Dahlstedt A, et al. Blast furnace pellet textures during reduction and correlation to strength. ISIJ Int, 2010, 50(10): 1396 doi: 10.2355/isijinternational.50.1396
|
[32] |
周繼程, 薛正良, 李宗強, 等. 高磷鮞狀赤鐵礦直接還原過程中鐵顆粒長大特性研究. 武漢科技大學學報(自然科學版), 2007, 30(5):458
Zhou J C, Xue Z L, Li Z Q, et al. Characteristics of grain growth of metallic phase in direct reduction of high phosphorus oolitic hematite. J Wuhan Univ Sci Technol (Nat Sci Ed)
|
[33] |
Tang H Q, Rong T, Fan K. Numerical investigation of applying high-carbon metallic briquette in blast furnace ironmaking. ISIJ Int, 2019, 59(5): 810 doi: 10.2355/isijinternational.ISIJINT-2018-673
|
[34] |
Chu M S, Nogami H, Yagi J I. Numerical analysis on charging carbon composite agglomerates into blast furnace. ISIJ Int, 2004, 44(3): 510 doi: 10.2355/isijinternational.44.510
|
[35] |
Kasai A, Matsui Y. Lowering of thermal reserve zone temperature in blast furnace by adjoining carbonaceous material and iron ore. ISIJ Int, 2004, 44(12): 2073 doi: 10.2355/isijinternational.44.2073
|