Citation: | WU Shi-chao, SUN Ti-chang, KOU Jue, LI Xiao-hui. Pilot study of high-phosphorus oolitic iron ore for iron recovery and dephosphorization by direct reduction–magnetic separation[J]. Chinese Journal of Engineering, 2022, 44(5): 849-856. doi: 10.13374/j.issn2095-9389.2020.11.29.002 |
[1] |
Wu S C, Li Z Y, Sun T C, et al. Effect of additives on iron recovery and dephosphorization by reduction roasting–magnetic separation of refractory high-phosphorus iron ore. Int J Miner Metall Mater, 2021, 28(12): 1908 doi: 10.1007/s12613-021-2329-8
|
[2] |
Bao Q P, Guo L, Guo Z C. A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines. Powder Technol, 2021, 377: 149 doi: 10.1016/j.powtec.2020.08.066
|
[3] |
Zhou W T, Han Y X, Sun Y S, et al. Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment. Int J Miner Metall Mater, 2020, 27(4): 443 doi: 10.1007/s12613-019-1897-3
|
[4] |
Tang H Q, Qi T F, Qin Y Q. Production of low-phosphorus molten iron from high-phosphorus oolitic hematite using biomass char. JOM, 2015, 67(9): 1956 doi: 10.1007/s11837-015-1541-2
|
[5] |
Quast K. A review on the characterisation and processing of oolitic iron ores. Miner Eng, 2018, 126: 89 doi: 10.1016/j.mineng.2018.06.018
|
[6] |
Zhu D Q, Chun T J, Pan J, et al. Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate. Int J Miner Metall Mater, 2013, 20(6): 505 doi: 10.1007/s12613-013-0758-8
|
[7] |
Yu W, Sun T C, Kou J, et al. The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets. ISIJ Int, 2013, 53(3): 427 doi: 10.2355/isijinternational.53.427
|
[8] |
Li G H, Zhang S H, Rao M J, et al. Effects of sodium salts on reduction roasting and Fe-P separation of high-phosphorus oolitic hematite ore. Int J Miner Process, 2013, 124: 26 doi: 10.1016/j.minpro.2013.07.006
|
[9] |
Rao M J, Ouyang C Z, Li G H, et al. Behavior of phosphorus during the carbothermic reduction of phosphorus-rich oolitic hematite ore in the presence of Na2SO4. Int J Miner Process, 2015, 143: 72 doi: 10.1016/j.minpro.2015.09.002
|
[10] |
李永利, 孫體昌, 徐承焱, 等. 高磷鮞狀赤鐵礦直接還原同步脫磷新脫磷劑. 中南大學學報(自然科學版), 2012, 43(3):827
Li Y L, Sun T C, Xu C Y, et al. New dephosphorizing agent for phosphorus removal from high-phosphorus oolitic hematite ore in direct reduction roasting. J Central South Univ (Sci Technol)
|
[11] |
徐承焱, 孫體昌, 祁超英, 等. 還原劑對高磷鮞狀赤鐵礦直接還原同步脫磷的影響. 中國有色金屬學報, 2011, 21(3):680
Xu C Y, Sun T C, Qi C Y, et al. Effects of reductants on direct reduction and synchronous dephosphorization of high-phosphorous oolitic hematite. Chin J Nonferrous Met, 2011, 21(3): 680
|
[12] |
Yu W, Tang Q Y, Chen J A, et al. Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage. Int J Miner Metall Mater, 2016, 23(10): 1126 doi: 10.1007/s12613-016-1331-z
|
[13] |
Zhang Y Y, Xue Q G, Wang G, et al. Phosphorus-containing mineral evolution and thermodynamics of phosphorus vaporization during carbothermal reduction of high-phosphorus iron ore. Metals, 2018, 8(6): 451 doi: 10.3390/met8060451
|
[14] |
Sun Y S, Han Y X, Wei X C, et al. Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture. J Therm Anal Calorim, 2016, 123(1): 703 doi: 10.1007/s10973-015-4863-y
|
[15] |
Sun Y S, Han Y X, Gao P, et al. Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms. Int J Miner Process, 2015, 143: 87 doi: 10.1016/j.minpro.2015.09.005
|
[16] |
Cha J W, Kim D Y, Jung S M. Distribution behavior of phosphorus and metallization of iron oxide in carbothermic reduction of high-phosphorus iron ore. Metall Mater Trans B, 2015, 46(5): 2165 doi: 10.1007/s11663-015-0399-6
|
[17] |
Sun Y S, Han Y X, Gao P, et al. Distribution behavior of phosphorus in the coal-based reduction of high-phosphorus-content oolitic iron ore. Int J Miner Metall Mater, 2014, 21(4): 331 doi: 10.1007/s12613-014-0913-x
|
[18] |
Li Y F, Han Y X, Sun Y S, et al. Growth behavior and size characterization of metallic iron particles in coal-based reduction of oolitic hematite–coal composite briquettes. Minerals, 2018, 8(5): 177 doi: 10.3390/min8050177
|
[19] |
Sun Y S, Han Y X, Li Y F, et al. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore. Int J Miner Metall Mater, 2017, 24(2): 123 doi: 10.1007/s12613-017-1386-5
|
[20] |
胡俊鴿, 吳美慶, 毛艷麗. 直接還原煉鐵技術的最新發展. 鋼鐵研究, 2006, 34(2):53 doi: 10.3969/j.issn.1001-1447.2006.02.014
Hu J G, Wu M Q, Mao Y L. Latest development of direct reduction processes of iron ores. Res Iron Steel, 2006, 34(2): 53 doi: 10.3969/j.issn.1001-1447.2006.02.014
|
[21] |
Cao Z C, Sun T C, Xue X, et al. Iron recovery from discarded copper slag in a RHF direct reduction and subsequent grinding/magnetic separation process. Minerals, 2016, 6(4): 119 doi: 10.3390/min6040119
|
[22] |
儲滿生, 趙慶杰. 中國發展非高爐煉鐵的現狀及展望. 中國冶金, 2008, 18(9):1 doi: 10.3969/j.issn.1006-9356.2008.09.001
Chu M S, Zhao Q J. Present status and development perspective of direct reduction and smelting reduction in China. China Metall, 2008, 18(9): 1 doi: 10.3969/j.issn.1006-9356.2008.09.001
|
[23] |
Liang Z K, Yi L Y, Huang Z C, et al. A novel and green metallurgical technique of highly efficient iron recovery from refractory low-grade iron ores. ACS Sustain Chem Eng, 2019, 7(22): 18726 doi: 10.1021/acssuschemeng.9b05423
|
[24] |
Ma B Z, Yang W J, Xing P, et al. Pilot-scale plant study on solid-state metalized reduction-magnetic separation for magnesium-rich nickel oxide ores. Int J Miner Process, 2017, 169: 99 doi: 10.1016/j.minpro.2017.11.002
|
[25] |
吳世超, 孫體昌, 楊慧芬. 國外某高磷鮞狀赤鐵礦直接還原?磁選降磷研究. 金屬礦山, 2019(11):109
Wu S C, Sun T C, Yang H F. Study on phosphorus removal of high-phosphorus oolitic hematite abroad by direct reduction and magnetic separation. Met Mine, 2019(11): 109
|
[26] |
Yang M, Zhu Q S, Fan C L, et al. Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore. Int J Miner Metall Mater, 2015, 22(4): 346 doi: 10.1007/s12613-015-1079-x
|
[27] |
黃武勝, 延黎, 吳世超, 等. 國外某高磷鮞狀鐵礦石工藝礦物學研究. 金屬礦山, 2020(9):137
Huang W S, Yan L, Wu S C, et al. Study on the process mineralogy of a high phosphorus oolitic iron ore in abroad. Met Mine, 2020(9): 137
|
[28] |
Guo Z Q, Zhu D Q, Pan J, et al. Innovative methodology for comprehensive and harmless utilization of waste copper slag via selective reduction-magnetic separation process. J Clean Prod, 2018, 187: 910 doi: 10.1016/j.jclepro.2018.03.264
|
[29] |
Zhu D Q, Xu J W, Guo Z Q, et al. Synergetic utilization of copper slag and ferruginous manganese ore via co-reduction followed by magnetic separation process. J Clean Prod, 2020, 250: 119462 doi: 10.1016/j.jclepro.2019.119462
|