<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
LIU Shi-jie, FENG Ping-fa, ZHA Hui-ting, FENG Feng. Optimized design for a piezoelectric ultrasonic transducer based on the six-terminal network[J]. Chinese Journal of Engineering, 2022, 44(5): 933-939. doi: 10.13374/j.issn2095-9389.2020.11.24.008
Citation: LIU Shi-jie, FENG Ping-fa, ZHA Hui-ting, FENG Feng. Optimized design for a piezoelectric ultrasonic transducer based on the six-terminal network[J]. Chinese Journal of Engineering, 2022, 44(5): 933-939. doi: 10.13374/j.issn2095-9389.2020.11.24.008

Optimized design for a piezoelectric ultrasonic transducer based on the six-terminal network

doi: 10.13374/j.issn2095-9389.2020.11.24.008
More Information
  • Corresponding author: E-mail: zhahuiting123@sz.tsinghua.edu.cn
  • Received Date: 2020-11-24
  • Accepted Date: 2022-01-05
  • Available Online: 2021-02-01
  • Publish Date: 2022-05-25
  • As an effective method for efficient precision machining of hard and brittle materials, ultrasonic-assisted machining has been widely researched and applied over the past years. As a result, higher requirements are put forward for the performance of ultrasonic-assisted machining equipment. The ultrasonic transducer is one of the core components of an ultrasonic-assisted machining system, which determines its machining performance. The study on the design method of an ultrasonic transducer is necessary for the establishment of an ultrasonic-assisted machining system. The four-terminal network method based on mechanic-electric analogies is an effective design method, which regards the mechanical vibration system as an electrical four-terminal network. The wave velocity of the mechanical wave in the vibration system can be equivalent to the current in the equivalent circuit, and the force impedance at both ends of the vibration system can be equivalent to the electrical impedance at both ends of the equivalent circuit. The size of the ultrasonic transducer can be calculated according to the electromechanical similarity theory and vibration boundary conditions. However, the conventional four-terminal network design method of the piezoelectric ultrasonic transducer (PUT) neglects the electromechanical coupling process inside the stacked piezoelectric ceramics (SPCs). The PUT designed by this method has a big size error and low output amplitude. Aimed to obtain a higher ultrasonic amplitude of PUT, the equivalent six-terminal network of SPCs considering electromechanical coupling is introduced into the traditional design method, and two PUTs of different sizes are designed by the four-terminal network and the six-terminal network, named transducer A and transducer B, respectively. The natural frequency and output amplitudes of the two PUTs are analyzed and compared by the finite element method, and the experiments further verified the validity of the theory and the simulation analysis. When the excitation voltage is the same, results show that the output amplitude of transducer B (designed by the six-terminal network) is 1.5 times higher than that of transducer A. Finally, applying a six-terminal network to the PUT designing can improve the vibration performance of the PUT effectively.

     

  • loading
  • [1]
    Shih A J, Denkena B, Grove T, et al. Fixed abrasive machining of non-metallic materials. CIRP Ann, 2018, 67(2): 767 doi: 10.1016/j.cirp.2018.05.010
    [2]
    Wu H. Wire sawing technology: A state-of-the-art review. Precis Eng, 2016, 43: 1 doi: 10.1016/j.precisioneng.2015.08.008
    [3]
    Ohmori H, Ebizuka N, Morita S, et al. Ultraprecision micro-grinding of germanium immersion grating element for mid-infrared super dispersion spectrograph. CIRP Ann, 2001, 50(1): 221 doi: 10.1016/S0007-8506(07)62109-X
    [4]
    張云. 鈮酸鈦鈷基微波介質陶瓷的制備與性能研究[學位論文]. 北京: 北京科技大學, 2017

    Zhang Y. Studies on the Preparation and Properties of CoTiNb2O8-Based Microwave Dielectric Ceramics [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
    [5]
    Brinksmeier E, Mutlugunes Y, Klocke F, et al. Ultra-precision grinding. Cirp Annals, 2010, 59(2): 652 doi: 10.1016/j.cirp.2010.05.001
    [6]
    Zhou M, Wang X J, Ngoi B K A, et al. Brittle-ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. J Mater Process Technol, 2002, 121(2-3): 243 doi: 10.1016/S0924-0136(01)01262-6
    [7]
    Thoe T B, Aspinwall D K, Wise M L H. Review on ultrasonic machining. Int J Mach Tools Manuf, 1998, 38(4): 239 doi: 10.1016/S0890-6955(97)00036-9
    [8]
    Ibrahim M R, Rahim Z, Rahim E, et al. An experimental investigation of cutting temperature and tool wear in 2 dimensional ultrasonic vibrations assisted micro-milling // 2016 the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016). Chongqing, 2016: 07005
    [9]
    馮平法, 王健健, 張建富, 等. 硬脆材料旋轉超聲加工技術的研究現狀及展望. 機械工程學報, 2017, 53(19):3 doi: 10.3901/JME.2017.19.003

    Feng P F, Wang J J, Zhang J F, et al. Research status and future prospects of rotary ultrasonic machining of hard and brittle materials. J Mech Eng, 2017, 53(19): 3 doi: 10.3901/JME.2017.19.003
    [10]
    張承龍, 馮平法, 張建富. 光學玻璃旋轉超聲端面銑削表面特性. 清華大學學報(自然科學版), 2012, 52(11):1616

    Zhang C L, Feng P F, Zhang J F. Surface properties of optical glass processed with rotary ultrasonic face milling. J Tsinghua Univ (Sci Technol), 2012, 52(11): 1616
    [11]
    Zhou M, Wang M, Dong G J. Experimental investigation on rotary ultrasonic face grinding of SiCp/Al composites. Mater Manuf Process, 2016, 31(5): 673 doi: 10.1080/10426914.2015.1025962
    [12]
    賀西平, 高潔. 超聲變幅桿設計方法研究. 聲學技術, 2006, 25(1):82 doi: 10.3969/j.issn.1000-3630.2006.01.018

    He X P, Gao J. A review of ultrasonic solid horn design. Tech Acoust, 2006, 25(1): 82 doi: 10.3969/j.issn.1000-3630.2006.01.018
    [13]
    Lesniewski P. Discrete component equivalent circuit for Webster’s horns. Appl Acoust, 1995, 44(2): 117 doi: 10.1016/0003-682X(95)91367-C
    [14]
    高潔, 賀西平, 胡靜. 四端網絡法統一變幅桿的性能參量. 聲學技術, 2006, 25(1):87 doi: 10.3969/j.issn.1000-3630.2006.01.019

    Gao J, He X P, Hu J. Unified treatment of ultrasonic horn characteristics based on four-end network approach. Tech Acoust, 2006, 25(1): 87 doi: 10.3969/j.issn.1000-3630.2006.01.019
    [15]
    齊海群, 單小彪, 謝濤. 正交復合超聲振動拉絲. 北京科技大學學報, 2010, 32(1):89

    Qi H Q, Shan X B, Xie T. Wire drawing with orthogonal composite ultrasonic vibration. J Univ Sci Technol Beijing, 2010, 32(1): 89
    [16]
    Huang Y C, Ding G Z, Chen B H, et al. Simulation and experiment of Langevin-type piezoelectric ultrasonic horn for micro tool motion. Intell Technol Eng Syst, 2013, 234: 967
    [17]
    Guo P, Ehmann K F. Development of a New Vibrator for Elliptical Vibration Texturing // ASME 2011 International Manufacturing Science and Engineering Conference. Corvallis, 2011: 13
    [18]
    趙福令, 馮冬菊, 郭東明, 等. 超聲變幅桿的四端網絡法設計. 聲學學報, 2002, 27(6):554 doi: 10.3321/j.issn:0371-0025.2002.06.015

    Zhao F L, Feng D J, Guo D M, et al. Design of horn using four-end network method. Acta Acustica, 2002, 27(6): 554 doi: 10.3321/j.issn:0371-0025.2002.06.015
    [19]
    黃德中. 超聲波振動器四端網絡設計. 振動與沖擊, 2005, 24(5):107 doi: 10.3969/j.issn.1000-3835.2005.05.032

    Huang D Z. Design of vibration system for ultrasonic wave vibrator. J Vib Shock, 2005, 24(5): 107 doi: 10.3969/j.issn.1000-3835.2005.05.032
    [20]
    焦鳳瑀. 壓電和壓電半導體層狀結構中彈性波傳播研究[學位論文]. 北京: 北京科技大學, 2019

    Jiao F Y. Study on Elastic Waves Propagation in Piezoelectric and Piezoelectric Semiconductor Layer Structures [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [21]
    林書玉. 超聲換能器的原理及設計. 北京: 科學出版社, 2004

    Lin S Y. Theory and design of Ultrasonic Transducer. Beijing: Science Press, 2004
    [22]
    Martin G E. Vibrations of coaxially segmented, longitudinally polarized ferroelectric tubes. J Acoust Soc Am, 1964, 36(8): 1496 doi: 10.1121/1.1919233
    [23]
    左武魁, 周惟公, 魏民云, 等. 半波損失的形成和機理分析. 物理通報, 2019(1):33 doi: 10.3969/j.issn.0509-4038.2019.01.010

    Zuo W K, Zhou W G, Wei M Y, et al. Formation and mechanism analysis of half-wave loss. Phys Bull, 2019(1): 33 doi: 10.3969/j.issn.0509-4038.2019.01.010
    [24]
    賀李平, 任雪梅. 螺栓聯接的有限元建模方法研究. 北京理工大學學報, 2020, 40(12):1275

    He L P, Ren X M. Study on finite element modeling method of bolted joints. Trans Beijing Inst Technol, 2020, 40(12): 1275
    [25]
    喬家平. 換能器振子頻率的影響因素研究[學位論文]. 長沙: 中南大學, 2011

    Qiao J P. Study on the influencing factors of frequency of transducer vibrator [Dissertation]. Changsha: Central South University, 2011
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (1960) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频