Citation: | GONG Hai-qiang, PENG De-zhao, OU Xing, ZHANG Jia-feng. Research progress on the alkaline-system selective recycling technology in spent lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(7): 1213-1221. doi: 10.13374/j.issn2095-9389.2020.11.18.003 |
[1] |
Zhang W X, Xu C J, He W Z, et al. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them. Waste Manage Res, 2018, 36(2): 99 doi: 10.1177/0734242X17744655
|
[2] |
張英杰, 寧培超, 楊軒, 等. 廢舊三元鋰離子電池回收技術研究新進展. 化工進展, 2020, 39(7):2828
Zhang Y J, Ning P C, Yang X, et al. Research progress on the recycling technology of spent ternary lithium ion battery. Chem Ind Eng Prog, 2020, 39(7): 2828
|
[3] |
肖武坤, 張輝. 中國廢舊車用鋰離子電池回收利用概況. 電源技術, 2020, 44(8):1217 doi: 10.3969/j.issn.1002-087X.2020.08.034
Xiao W K, Zhang H. Recycling status of spent lithium-ion batteries for electric vehicle in China. Chin J Power Sources, 2020, 44(8): 1217 doi: 10.3969/j.issn.1002-087X.2020.08.034
|
[4] |
王斑. 我國新能源汽車動力電池回收體系的發展現狀及建議. 物流科技, 2019, 42(2):72 doi: 10.3969/j.issn.1002-3100.2019.02.020
Wang B. Development status and suggestions of power battery recovery system for new energy vehicles in China. Logist Sci Tech, 2019, 42(2): 72 doi: 10.3969/j.issn.1002-3100.2019.02.020
|
[5] |
張蘇江, 張彥文, 張立偉, 等. 中國鋰礦資源現狀及其可持續發展策略. 無機鹽工業, 2020, 52(7):1 doi: 10.11962/1006-4990.2020-0028
Zhang S J, Zhang Y W, Zhang L W, et al. Present situation and sustainable development strategy of China’s lithium resources. Inorg Chem Ind, 2020, 52(7): 1 doi: 10.11962/1006-4990.2020-0028
|
[6] |
任國興. 廢舊鋰離子電池直接還原熔煉高效分離回收有價金屬研究[學位論文]. 長沙: 長沙礦冶研究院, 2014
Ren G X. Research on Efficient Separation and Recovery of Valuable Metals from Waste Lithium Ion Batteries by Direct Reduction Smelting [Dissertation]. Changsha: Changsha Research Institute of Mining and Metallurgy, 2014
|
[7] |
茍海鵬, 裴忠冶, 周國治, 等. 廢舊三元鋰離子電池熱解工藝研究. 中國有色冶金, 2019, 48(5):74 doi: 10.3969/j.issn.1672-6103.2019.05.019
Gou H P, Pei Z Y, Zhou G Z, et al. Study on the recycle of the spent ternary Li-ion battery by the pyrometallurgical process. China Nonferrous Metall, 2019, 48(5): 74 doi: 10.3969/j.issn.1672-6103.2019.05.019
|
[8] |
Yao Y L, Zhu M Y, Zhao Z, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: A critical review. ACS Sustain Chem Eng, 2018, 6(11): 13611 doi: 10.1021/acssuschemeng.8b03545
|
[9] |
Meng X H, Han K N. The principles and applications of ammonia leaching of metals—A review. Miner Process Extr Metall Rev, 1996, 16(1): 23 doi: 10.1080/08827509608914128
|
[10] |
Zuniga M, Parada L F, Asselin E. Leaching of a limonitic laterite in ammoniacal solutions with metallic iron. Hydrometallurgy, 2010, 104(2): 260 doi: 10.1016/j.hydromet.2010.06.014
|
[11] |
Bhuntumkomol K, Han K N, Lawson F. The leaching behaviour of nickel oxides in acid and in ammoniacal solutions. Hydrometallurgy, 1982, 8(2): 147 doi: 10.1016/0304-386X(82)90041-X
|
[12] |
Wang R C, Lin Y C, Wu S H. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy, 2009, 99(3): 194
|
[13] |
譚群英, 唐紅輝, 龍桂花, 等. 二級逆流浸出廢舊鋰離子電池正極片中的鋁. 礦冶工程, 2012, 32(3):92 doi: 10.3969/j.issn.0253-6099.2012.03.025
Tan Q Y, Tang H H, Long G H, et al. Leaching aluminum from cathode electrode of spent lithium ion batteries by two-stage countercurrent process. Min Metall Eng, 2012, 32(3): 92 doi: 10.3969/j.issn.0253-6099.2012.03.025
|
[14] |
張永祿, 尹飛, 揭曉武, 等. 堿循環浸出法分離廢舊鋰離子電池中鋁的研究. 有色金屬(冶煉部分), 2018(12):22
Zhang Y L, Yin F, Jie X W, et al. Study on removal of aluminum from spent lithium-ion batteries by alkali recycling leaching process. Nonferrous Met (Extr Metall)
|
[15] |
張賀杰, 陳興, 鄒興, 等. 廢舊鋰離子電池正極材料除鋁技術研究進展. 過程工程學報, 2020, 20(5):503 doi: 10.12034/j.issn.1009-606X.219260
Zhang H J, Chen X, Zou X, et al. Research progress of aluminum removal technology for cathode materials of spent lithium-ion batteries. Chin J Process Eng, 2020, 20(5): 503 doi: 10.12034/j.issn.1009-606X.219260
|
[16] |
Zheng X H, Gao W F, Zhang X H, et al. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Manage, 2017, 60: 680 doi: 10.1016/j.wasman.2016.12.007
|
[17] |
Ku H, Jung Y, Jo M, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J Hazard Mater, 2016, 313: 138 doi: 10.1016/j.jhazmat.2016.03.062
|
[18] |
王皓, 劉勇奇, 王杜, 等. 廢舊鋰電池正極粉氨性浸出實驗研究. 廣東化工, 2020, 47(13):69 doi: 10.3969/j.issn.1007-1865.2020.13.030
Wang H, Liu Y Q, Wang D, et al. Experimental study on ammonia leaching of waste lithium battery positive powder. Guangdong Chem Ind, 2020, 47(13): 69 doi: 10.3969/j.issn.1007-1865.2020.13.030
|
[19] |
Wang S B, Wang C, Lai F J, et al. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts. Waste Manage, 2020, 102: 122 doi: 10.1016/j.wasman.2019.10.017
|
[20] |
Das R P, Anand S, Das S C, et al. Leaching of manganese nodules in ammoniacal medium using glucose as reductant. Hydrometallurgy, 1986, 16(3): 335 doi: 10.1016/0304-386X(86)90008-3
|
[21] |
Qi Y P, Meng F S, Yi X X, et al. A novel and efficient ammonia leaching method for recycling waste lithium ion batteries. J Clean Prod, 2020, 251: 119665 doi: 10.1016/j.jclepro.2019.119665
|
[22] |
Wang C, Wang S B, Yan F, et al. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Manage, 2020, 114: 253 doi: 10.1016/j.wasman.2020.07.008
|
[23] |
Meshram P, Abhilash, Pandey B D, et al. Comparision of different reductants in leaching of spent lithium ion batteries. JOM, 2016, 68(10): 2613 doi: 10.1007/s11837-016-2032-9
|
[24] |
Ma Y Y, Tang J J, Wanaldi R, et al. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching. J Hazard Mater, 2021, 402: 123491 doi: 10.1016/j.jhazmat.2020.123491
|
[25] |
Chen Y M, Liu N N, Hu F, et al. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries. Waste Manage, 2018, 75: 469 doi: 10.1016/j.wasman.2018.02.024
|
[26] |
Qiu R J, Lin M, Ruan J J, et al. Recovering full metallic resources from waste printed circuit boards: A refined review. J Clean Prod, 2020, 244: 118690 doi: 10.1016/j.jclepro.2019.118690
|
[27] |
陳夢君, 李淑媛, 鄧毅, 等. 廢舊鋰離子電池正負極混合物氨浸液電沉積研究. 有色金屬(冶煉部分), 2020(9):25
Chen M J, Li S Y, Deng Y, et al. Study on electro-deposition of ammonia leaching solution of waste lithium ion batteries cathode and anode mixture. Nonferrous Met (Extr Metall)
|
[28] |
齊亞平. 廢舊鋰離子電池礦漿電解過程資源化研究[學術論文]. 綿陽: 西南科技大學, 2020
Qi Y P. Study on the Recycling of Waste Lithium-ion Batteries by Slurry Electrolysis [Dissertation]. Mian Yang: Southwest University off Science and Technology, 2020
|
[29] |
Wang H Y, Huang K, Zhang Y, et al. Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system. ACS Sustain Chem Eng, 2017, 5(12): 11489 doi: 10.1021/acssuschemeng.7b02700
|
[30] |
吳彩斌, 李本盛. 利用廢舊電池中石墨一步氧化還原制備石墨烯的方法: 中國專利, CN110498410A. 2019-11-26
Wu C B, Li B S. Method for Preparing Graphene by Utilizing Graphite in Waste Batteries through One-step Redox: China Patent, CN110498410A. 2019-11-26
|