<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
GONG Hai-qiang, PENG De-zhao, OU Xing, ZHANG Jia-feng. Research progress on the alkaline-system selective recycling technology in spent lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(7): 1213-1221. doi: 10.13374/j.issn2095-9389.2020.11.18.003
Citation: GONG Hai-qiang, PENG De-zhao, OU Xing, ZHANG Jia-feng. Research progress on the alkaline-system selective recycling technology in spent lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(7): 1213-1221. doi: 10.13374/j.issn2095-9389.2020.11.18.003

Research progress on the alkaline-system selective recycling technology in spent lithium-ion batteries

doi: 10.13374/j.issn2095-9389.2020.11.18.003
More Information
  • Corresponding author: E-mail: yjyzjf@csu.edu.cn
  • Received Date: 2020-11-18
    Available Online: 2021-01-20
  • Publish Date: 2022-07-01
  • Due to the issue of raw material depletion, lithium-ion batteries are becoming less value-added. In addition, the highly toxic organic electrolytes contained in them cause serious harm to humans and the environment. That is why the effective recovery of spent lithium-ion batteries is of great importance for the development and sustainable use of lithium-ion batteries. Currently, recovery of metals present in spent lithium-ion batteries mainly relies on hydrometallurgical extraction: The main metals are extracted through acid or alkali media followed by recovery of metal compounds through further processing or the resynthesis of high-performance materials. Among them, acid leaching is a short and highly efficient process; however, this process dissolves all the metal ions in the solution, making it difficult to subsequently separate and purify the valuable metals. Contrarily, the hydroxide of impure metal in lithium-ion batteries shows low solubility, whereas lithium, nickel, and cobalt have high solubility, allowing for the formation of complexes with ammonia ions that can exist in alkali solution in large quantities. Thus, alkaline leaching has better selective leaching of metals in electrode materials due to the high solubility of lithium, nickel, and cobalt ammonia complexes and has a more efficient and cleaner recovery process, which is of outstanding importance in the industry. Most research was mainly focused on various acid recovery systems and scales, and the research progress on the alkaline recovery process was insufficient. Here, based on the industrial research status of alkali leaching recovery, four alkali leaching recovery systems, which include the ammonia leaching-reductant-hot working system, ammonia leaching-reductant-electrodeposition system, ammonia leaching-reductant-lithium adsorption system, and ammonia leaching-reductant-oxidation separation system, were reviewed along with their principles and advantages. Finally, a brief summary of the recovery methods for spent lithium-ion batteries was expressed.

     

  • loading
  • [1]
    Zhang W X, Xu C J, He W Z, et al. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them. Waste Manage Res, 2018, 36(2): 99 doi: 10.1177/0734242X17744655
    [2]
    張英杰, 寧培超, 楊軒, 等. 廢舊三元鋰離子電池回收技術研究新進展. 化工進展, 2020, 39(7):2828

    Zhang Y J, Ning P C, Yang X, et al. Research progress on the recycling technology of spent ternary lithium ion battery. Chem Ind Eng Prog, 2020, 39(7): 2828
    [3]
    肖武坤, 張輝. 中國廢舊車用鋰離子電池回收利用概況. 電源技術, 2020, 44(8):1217 doi: 10.3969/j.issn.1002-087X.2020.08.034

    Xiao W K, Zhang H. Recycling status of spent lithium-ion batteries for electric vehicle in China. Chin J Power Sources, 2020, 44(8): 1217 doi: 10.3969/j.issn.1002-087X.2020.08.034
    [4]
    王斑. 我國新能源汽車動力電池回收體系的發展現狀及建議. 物流科技, 2019, 42(2):72 doi: 10.3969/j.issn.1002-3100.2019.02.020

    Wang B. Development status and suggestions of power battery recovery system for new energy vehicles in China. Logist Sci Tech, 2019, 42(2): 72 doi: 10.3969/j.issn.1002-3100.2019.02.020
    [5]
    張蘇江, 張彥文, 張立偉, 等. 中國鋰礦資源現狀及其可持續發展策略. 無機鹽工業, 2020, 52(7):1 doi: 10.11962/1006-4990.2020-0028

    Zhang S J, Zhang Y W, Zhang L W, et al. Present situation and sustainable development strategy of China’s lithium resources. Inorg Chem Ind, 2020, 52(7): 1 doi: 10.11962/1006-4990.2020-0028
    [6]
    任國興. 廢舊鋰離子電池直接還原熔煉高效分離回收有價金屬研究[學位論文]. 長沙: 長沙礦冶研究院, 2014

    Ren G X. Research on Efficient Separation and Recovery of Valuable Metals from Waste Lithium Ion Batteries by Direct Reduction Smelting [Dissertation]. Changsha: Changsha Research Institute of Mining and Metallurgy, 2014
    [7]
    茍海鵬, 裴忠冶, 周國治, 等. 廢舊三元鋰離子電池熱解工藝研究. 中國有色冶金, 2019, 48(5):74 doi: 10.3969/j.issn.1672-6103.2019.05.019

    Gou H P, Pei Z Y, Zhou G Z, et al. Study on the recycle of the spent ternary Li-ion battery by the pyrometallurgical process. China Nonferrous Metall, 2019, 48(5): 74 doi: 10.3969/j.issn.1672-6103.2019.05.019
    [8]
    Yao Y L, Zhu M Y, Zhao Z, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: A critical review. ACS Sustain Chem Eng, 2018, 6(11): 13611 doi: 10.1021/acssuschemeng.8b03545
    [9]
    Meng X H, Han K N. The principles and applications of ammonia leaching of metals—A review. Miner Process Extr Metall Rev, 1996, 16(1): 23 doi: 10.1080/08827509608914128
    [10]
    Zuniga M, Parada L F, Asselin E. Leaching of a limonitic laterite in ammoniacal solutions with metallic iron. Hydrometallurgy, 2010, 104(2): 260 doi: 10.1016/j.hydromet.2010.06.014
    [11]
    Bhuntumkomol K, Han K N, Lawson F. The leaching behaviour of nickel oxides in acid and in ammoniacal solutions. Hydrometallurgy, 1982, 8(2): 147 doi: 10.1016/0304-386X(82)90041-X
    [12]
    Wang R C, Lin Y C, Wu S H. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy, 2009, 99(3): 194
    [13]
    譚群英, 唐紅輝, 龍桂花, 等. 二級逆流浸出廢舊鋰離子電池正極片中的鋁. 礦冶工程, 2012, 32(3):92 doi: 10.3969/j.issn.0253-6099.2012.03.025

    Tan Q Y, Tang H H, Long G H, et al. Leaching aluminum from cathode electrode of spent lithium ion batteries by two-stage countercurrent process. Min Metall Eng, 2012, 32(3): 92 doi: 10.3969/j.issn.0253-6099.2012.03.025
    [14]
    張永祿, 尹飛, 揭曉武, 等. 堿循環浸出法分離廢舊鋰離子電池中鋁的研究. 有色金屬(冶煉部分), 2018(12):22

    Zhang Y L, Yin F, Jie X W, et al. Study on removal of aluminum from spent lithium-ion batteries by alkali recycling leaching process. Nonferrous Met (Extr Metall), 2018(12): 22
    [15]
    張賀杰, 陳興, 鄒興, 等. 廢舊鋰離子電池正極材料除鋁技術研究進展. 過程工程學報, 2020, 20(5):503 doi: 10.12034/j.issn.1009-606X.219260

    Zhang H J, Chen X, Zou X, et al. Research progress of aluminum removal technology for cathode materials of spent lithium-ion batteries. Chin J Process Eng, 2020, 20(5): 503 doi: 10.12034/j.issn.1009-606X.219260
    [16]
    Zheng X H, Gao W F, Zhang X H, et al. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Manage, 2017, 60: 680 doi: 10.1016/j.wasman.2016.12.007
    [17]
    Ku H, Jung Y, Jo M, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J Hazard Mater, 2016, 313: 138 doi: 10.1016/j.jhazmat.2016.03.062
    [18]
    王皓, 劉勇奇, 王杜, 等. 廢舊鋰電池正極粉氨性浸出實驗研究. 廣東化工, 2020, 47(13):69 doi: 10.3969/j.issn.1007-1865.2020.13.030

    Wang H, Liu Y Q, Wang D, et al. Experimental study on ammonia leaching of waste lithium battery positive powder. Guangdong Chem Ind, 2020, 47(13): 69 doi: 10.3969/j.issn.1007-1865.2020.13.030
    [19]
    Wang S B, Wang C, Lai F J, et al. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts. Waste Manage, 2020, 102: 122 doi: 10.1016/j.wasman.2019.10.017
    [20]
    Das R P, Anand S, Das S C, et al. Leaching of manganese nodules in ammoniacal medium using glucose as reductant. Hydrometallurgy, 1986, 16(3): 335 doi: 10.1016/0304-386X(86)90008-3
    [21]
    Qi Y P, Meng F S, Yi X X, et al. A novel and efficient ammonia leaching method for recycling waste lithium ion batteries. J Clean Prod, 2020, 251: 119665 doi: 10.1016/j.jclepro.2019.119665
    [22]
    Wang C, Wang S B, Yan F, et al. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Manage, 2020, 114: 253 doi: 10.1016/j.wasman.2020.07.008
    [23]
    Meshram P, Abhilash, Pandey B D, et al. Comparision of different reductants in leaching of spent lithium ion batteries. JOM, 2016, 68(10): 2613 doi: 10.1007/s11837-016-2032-9
    [24]
    Ma Y Y, Tang J J, Wanaldi R, et al. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching. J Hazard Mater, 2021, 402: 123491 doi: 10.1016/j.jhazmat.2020.123491
    [25]
    Chen Y M, Liu N N, Hu F, et al. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries. Waste Manage, 2018, 75: 469 doi: 10.1016/j.wasman.2018.02.024
    [26]
    Qiu R J, Lin M, Ruan J J, et al. Recovering full metallic resources from waste printed circuit boards: A refined review. J Clean Prod, 2020, 244: 118690 doi: 10.1016/j.jclepro.2019.118690
    [27]
    陳夢君, 李淑媛, 鄧毅, 等. 廢舊鋰離子電池正負極混合物氨浸液電沉積研究. 有色金屬(冶煉部分), 2020(9):25

    Chen M J, Li S Y, Deng Y, et al. Study on electro-deposition of ammonia leaching solution of waste lithium ion batteries cathode and anode mixture. Nonferrous Met (Extr Metall), 2020(9): 25
    [28]
    齊亞平. 廢舊鋰離子電池礦漿電解過程資源化研究[學術論文]. 綿陽: 西南科技大學, 2020

    Qi Y P. Study on the Recycling of Waste Lithium-ion Batteries by Slurry Electrolysis [Dissertation]. Mian Yang: Southwest University off Science and Technology, 2020
    [29]
    Wang H Y, Huang K, Zhang Y, et al. Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system. ACS Sustain Chem Eng, 2017, 5(12): 11489 doi: 10.1021/acssuschemeng.7b02700
    [30]
    吳彩斌, 李本盛. 利用廢舊電池中石墨一步氧化還原制備石墨烯的方法: 中國專利, CN110498410A. 2019-11-26

    Wu C B, Li B S. Method for Preparing Graphene by Utilizing Graphite in Waste Batteries through One-step Redox: China Patent, CN110498410A. 2019-11-26
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)

    Article views (981) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频