<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
WANG Zhi-kai, WANG Yi-ming, WU Ai-xiang, LI Gen, LI Jian-qiu. Effect of storage temperature on the cementitious property of hemihydrate phosphogypsum[J]. Chinese Journal of Engineering, 2022, 44(5): 840-848. doi: 10.13374/j.issn2095-9389.2020.11.13.001
Citation: WANG Zhi-kai, WANG Yi-ming, WU Ai-xiang, LI Gen, LI Jian-qiu. Effect of storage temperature on the cementitious property of hemihydrate phosphogypsum[J]. Chinese Journal of Engineering, 2022, 44(5): 840-848. doi: 10.13374/j.issn2095-9389.2020.11.13.001

Effect of storage temperature on the cementitious property of hemihydrate phosphogypsum

doi: 10.13374/j.issn2095-9389.2020.11.13.001
More Information
  • Corresponding author: E-mail: ustbwym@126.com
  • Received Date: 2020-11-13
    Available Online: 2020-12-23
  • Publish Date: 2022-05-25
  • Whether domestic or foreign, the utilization of phosphogypsum (PG) resources is not satisfactory. A chemical plant in Guizhou produces phosphoric acid through a semi-aqueous process to obtain the byproduct hemihydrate phosphogypsum (HPG), which has a certain gelling activity. If this feature of HPG can be fully utilized, it can replace cement as a cementing material to prepare mine-filling materials. Utilizing HPG for goaf filling can not only reduce the environmental protection problems caused by the surface discharge of PG but also eliminate the hidden safety hazards in the goaf. At present, when HPG is used to prepare mine-filling cementitious materials, HPG will be consolidated into a block and lose its gelling activity when it is stacked for a certain period of time. The gelling performance of the HPG in the storage state appears to decline. Based on the indoor HPG crystal water detection and uniaxial compression test and setting four different storage temperatures (20 ℃, 40 ℃, 60 ℃, and 80 ℃), this study explored the changes in the mass fraction of the crystal water of HPG samples under different storage temperatures. The compressive strength development law of HCM prepared after storage and microscopic analysis methods, such as scanning electron microscopy, were used to study the influence mechanism of the storage temperature on its strength. Results show that the stacking temperature has a significant effect on the gelling performance of HPG. A high stacking temperature will speed up the conversion of free water in the HPG sample to crystal water and inhibit the strength development of the HCM prepared after stacking. Data standardization was used to predict the compressive strength of samples after storage at different temperatures, which is confirmed to be in good agreement with the measured values. The microscopic analysis found that the storage temperature mainly affects the supersaturation of the system, and the microscopic morphology of the HCM prepared after storage at different temperatures is different.

     

  • loading
  • [1]
    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417

    Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
    [2]
    吳愛祥, 李紅, 程海勇, 等. 全尾砂膏體流變學研究現狀與展望(上): 概念、特性與模型. 工程科學學報, 2020, 42(7):803

    Wu A X, Li H, Cheng H Y, et al. Status and prospects of researches on rheology of paste backfill using unclassified-tailings (Part 1): concepts, characteristics and models. Chin J Eng, 2020, 42(7): 803
    [3]
    孫小巍, 吳陶俊. 堿激發礦渣膠凝材料的試驗研究. 硅酸鹽通報, 2014, 33(11):3036

    Sun X W, Wu T J. Experimental research of alkali-activated slag cementitious material. Bull Chin Ceram Soc, 2014, 33(11): 3036
    [4]
    梁志強. 新型礦山充填膠凝材料的研究與應用綜述. 金屬礦山, 2015(6):164 doi: 10.3969/j.issn.1001-1250.2015.06.035

    Liang Z Q. Review on development and application of new type backfilling cementing materials in mining industry. Met Mine, 2015(6): 164 doi: 10.3969/j.issn.1001-1250.2015.06.035
    [5]
    張光存, 楊志強, 高謙, 等. 利用磷石膏開發替代水泥的早強充填膠凝材料. 金屬礦山, 2015(3):194

    Zhang G C, Yang Z Q, Gao Q, et al. Development of early strength filling cementing material with phosphogypsum as substitute of traditional cement. Met Mine, 2015(3): 194
    [6]
    李劍秋, 李子軍, 王佳才, 等. 磷石膏充填材料與技術發展現狀及展望. 現代礦業, 2018(10):1 doi: 10.3969/j.issn.1674-6082.2018.10.001

    Li J Q, Li Z J, Wang J C, et al. Development status and prospect of phosphogypsum filling material and technique. Mod Min, 2018(10): 1 doi: 10.3969/j.issn.1674-6082.2018.10.001
    [7]
    王貽明, 王志凱, 吳愛祥, 等. 新型膠凝充填材料制備及固化機理分析. 金屬礦山, 2018(6):20

    Wang Y M, Wang Z K, Wu A X, et al. Preparation of new cementitious backfilling material and its curing mechanism analysis. Met Mine, 2018(6): 20
    [8]
    蘭文濤, 吳愛祥, 王貽明, 等. 基于正交試驗的半水磷石膏充填配比優化. 中國有色金屬學報, 2019, 29(5):1083

    Lan W T, Wu A X, Wang Y M, et al. Optimization of filling ratio of hemihydrate phosphogypsum based on orthogonal test. Chin J Nonferrous Met, 2019, 29(5): 1083
    [9]
    蘭文濤, 吳愛祥, 王貽明. 凝水膨脹充填復合材料的配比優化與形成機制. 復合材料學報, 2019, 36(6):1536

    Lan W T, Wu A X, Wang Y M. Formulation optimization and formation mechanism of condensate expansion and filling composites. Acta Mater Compos Sin, 2019, 36(6): 1536
    [10]
    姜關照, 吳愛祥, 王貽明, 等. 生石灰對半水磷石膏充填膠凝材料性能影響. 硅酸鹽學報, 2020, 48(1):86

    Jiang G Z, Wu A X, Wang Y M, et al. Effect of lime on properties of filling cementitious material prepared by hemihydrate phosphogypsum. J Chin Ceram Soc, 2020, 48(1): 86
    [11]
    蘭文濤, 吳愛祥, 王貽明, 等. 半水磷石膏充填體離子固化與尺寸效應. 中國環境科學, 2019, 39(1):210 doi: 10.3969/j.issn.1000-6923.2019.01.024

    Lan W T, Wu A X, Wang Y M, et al. Ionic solidification and size effect of hemihydrate phosphogypsum backfill. China Environ Sci, 2019, 39(1): 210 doi: 10.3969/j.issn.1000-6923.2019.01.024
    [12]
    楊斌. 水熱法處理磷石膏過程研究[學位論文]. 昆明: 昆明理工大學, 2006

    Yang B. Study on the Process of Hydrothermal Treatment of Phosphogypsum [Dissertation]. Kunming: Kunming University of Science and Technology, 2006
    [13]
    蘭文濤, 吳愛祥, 王貽明, 等. 半水磷石膏充填強度影響因素試驗. 哈爾濱工業大學學報, 2019, 51(8):128 doi: 10.11918/j.issn.0367-6234.201804082

    Lan W T, Wu A X, Wang Y M, et al. Experimental study on influencing factors of the filling strength of hemihydrate phosphogypsum. J Harbin Inst Technol, 2019, 51(8): 128 doi: 10.11918/j.issn.0367-6234.201804082
    [14]
    楊林, 曹建新, 劉亞明. 半水磷石膏的礦物學特征. 巖石礦物學雜志, 2015, 34(6):827 doi: 10.3969/j.issn.1000-6524.2015.06.005

    Yang L, Cao J X, Liu Y M. Mineralogical characteristics of hemi-hydrate phosphogypsum. Acta Petrol Mineral, 2015, 34(6): 827 doi: 10.3969/j.issn.1000-6524.2015.06.005
    [15]
    Chitambira B. Accelerated Ageing of Cement Stabilised/Solidified Contaminated Soils with Elevated Temperatures [Dissertation]. Cambridge: Cambridge University, 2004
    [16]
    章榮軍, 鄭俊杰, 程鈺詩, 等. 養護溫度對水泥固化淤泥強度影響試驗研究. 巖土力學, 2016, 37(12):3463

    Zhang R J, Zheng J J, Cheng Y S, et al. Experimental investigation on effect of curing temperature on strength development of cement stabilized clay. Rock Soil Mech, 2016, 37(12): 3463
    [17]
    Morohoshi K, Yoshinaga K, Miyata M, et al. Design and long-term monitoring of Tokyo International Airport extension project constructed on super-soft ground. Geotech Geol Eng, 2010, 28(3): 223 doi: 10.1007/s10706-010-9312-x
    [18]
    姚松, 韓斌, 吳愛祥, 等. 溫度對高寒礦山濕噴混凝土強度影響規律及工程應用研究. 采礦與安全工程學報, 2017, 34(2):384

    Yao S, Han B, Wu A X, et al. The effect of temperature on strength of wet shotcrete in cold mining areas and its engineering application. J Min Saf Eng, 2017, 34(2): 384
    [19]
    王東星, 高向雲, 鄒維列, 等. 高溫效應下MgO-礦粉/粉煤灰固化土強度預測. 華中科技大學學報(自然科學版), 2019, 47(6):92

    Wang D X, Gao X Y, Zou W L, et al. Study on strength predication of reactive MgO-slag/fly ash stabilized clay considering high temperature effect. J Huazhong Univ Sci Technol Nat Sci Ed, 2019, 47(6): 92
    [20]
    楊成軍, 楊敏, 曹建新. 半水/無水磷石膏復相膠凝材料水化硬化特性研究. 非金屬礦, 2014(6):22 doi: 10.3969/j.issn.1000-8098.2014.06.008

    Yang C J, Yang M, Cao J X. Study on hydration and hardening of duplex gypsum binder of hemihydrite phosphogypsum and anhydrite phosphogypsum. Non-Metallic Mines, 2014(6): 22 doi: 10.3969/j.issn.1000-8098.2014.06.008
    [21]
    張佳莉. 減水劑對α半水石膏水化硬化過程的影響研究[學位論文]. 杭州: 浙江大學, 2008

    Zhang J L. Research on the Effects of Water-reducing Agents on the Hydration and Setting of α-Calcium Sulfate Hemihydrates [Dissertation]. Hangzhou: Zhejiang University, 2008
    [22]
    林宗壽. 膠凝材料學. 武漢: 武漢理工大學出版社, 2014

    Lin Z S. Cementitious Materials Science. Wuhan: Wuhan University of Technology Press, 2014
    [23]
    蘭文濤. 半水磷石膏基礦用復合充填材料及其管輸特性研究[學位論文]. 北京: 北京科技大學, 2019

    Lan W T. Research on Hemihydrate Phosphogypsum Based Mineral Filling Composites and Its Pipe Flow Performance [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [24]
    Jiang G Z, Wu A X, Wang Y M, et al. Low cost and high efficiency utilization of hemihydrate phosphogypsum: Used as binder to prepare filling material. Constr Build Mater, 2018, 167: 263 doi: 10.1016/j.conbuildmat.2018.02.022
    [25]
    Rong K W, Lan W T, Li H Y. Industrial experiment of goaf filling using the filling materials based on hemihydrate phosphogypsum. Minerals, 2020, 10(4): 324 doi: 10.3390/min10040324
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (3992) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频