<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
HUANG Ming-ji, HAN Jian-lei, DONG Xiu-ping. Tribological properties of the SLM-316L filament under the grease lubrication condition[J]. Chinese Journal of Engineering, 2021, 43(6): 835-842. doi: 10.13374/j.issn2095-9389.2020.11.12.005
Citation: HUANG Ming-ji, HAN Jian-lei, DONG Xiu-ping. Tribological properties of the SLM-316L filament under the grease lubrication condition[J]. Chinese Journal of Engineering, 2021, 43(6): 835-842. doi: 10.13374/j.issn2095-9389.2020.11.12.005

Tribological properties of the SLM-316L filament under the grease lubrication condition

doi: 10.13374/j.issn2095-9389.2020.11.12.005
More Information
  • To study the friction and wear properties of 316L stainless steel filaments prepared by selective laser melting (SLM) for metal rubber under the condition of grease lubrication, the friction coefficient and wear rate of SLM-316L filaments under different loads, different friction velocities, and Fv factors of the combined effect with load (F) and friction velocity (v) were discussed. Scanning electron microscope (SEM) was used to observe the surface morphology of filaments after wear, and energy dispersive spectrometer (EDS) was used to detect the element types and atomic percentages of the worn surface. Based on these two methods, the wear mechanism was analyzed. Results show that under the grease lubrication condition and with increased load, the friction coefficient decreases, whereas the wear rate initially decreases and then increases. With increased friction velocity, both the friction coefficient and wear rate tend to initially increase and then decrease. The wear mechanism of SLM-316L filaments under the low load condition is mainly abrasive wear and slight oxidative wear. At a high load, oxidative wear is aggravated and accompanied by fatigue wear. The wear mechanism of SLM-316L filaments at low friction velocities is mainly fatigue wear and oxidative wear. At high friction velocities, oxidative wear weakens, and abrasive wear becomes dominant. With an increased Fv value, the friction coefficient decreases and wear rate tends to initially rise, which then decreases and finally rises again. Therefore, the best working parameter of the metal rubber prepared using SLM-316L filaments under grease lubrication conditions is Fv=0.04 N?m?s?1, which means that the load is equal to 10 N and the friction velocity is 240 mm?min?1.

     

  • loading
  • [1]
    盧成壯, 李靜媛, 周邦陽, 等. 金屬絲特性對金屬橡膠疲勞性能的影響. 振動與沖擊, 2018, 37(24):137

    Lu C Z, Li J Y, Zhou B Y, et al. Effect of metallic wire materials characteristics on the fatigue properties of metal rubber. J Vib Shock, 2018, 37(24): 137
    [2]
    董秀萍, 劉國權, 牛犁, 等. 金屬橡膠隔振構件中不銹鋼絲的微動摩擦磨損性能研究. 摩擦學學報, 2008, 28(3):248 doi: 10.3321/j.issn:1004-0595.2008.03.012

    Dong X P, Liu G Q, Niu L, et al. Fretting wear of stainless steel wires in metal rubber damping components. Tribology, 2008, 28(3): 248 doi: 10.3321/j.issn:1004-0595.2008.03.012
    [3]
    白鴻柏, 詹智強, 任志英. 金屬橡膠聲學性能研究進展與展望. 振動與沖擊, 2020, 39(23):242

    Bai H B, Zhan Z Q, Ren Z Y. Progress and prospect of acoustic properties of metal rubber. J Vib Shock, 2020, 39(23): 242
    [4]
    Liu B Q, Fang G, Lei L P. An analytical model for rapid predicting molten pool geometry of selective laser melting (SLM). Appl Math Model, 2021, 92: 505 doi: 10.1016/j.apm.2020.11.027
    [5]
    Hsu T H, Huang P C, Lee M Y, et al. Effect of processing parameters on the fractions of martensite in 17-4 PH stainless steel fabricated by selective laser melting. J Alloys Compd, 2021, 859: 157758 doi: 10.1016/j.jallcom.2020.157758
    [6]
    Zhou Y, Ning F D. Build orientation effect on geometric performance of curved-surface 316L stainless steel parts fabricated by selective laser melting. J Manuf Sci Eng, 2020, 142(12): 121002 doi: 10.1115/1.4047624
    [7]
    Sander J, Hufenbach J, Giebeler L, et al. Microstructure, mechanical behavior, and wear properties of FeCrMoVC steel prepared by selective laser melting and casting. Scr Mater, 2017, 126: 41 doi: 10.1016/j.scriptamat.2016.07.029
    [8]
    Zhu Y, Lin G L, Khonsari M M, et al. Material characterization and lubricating behaviors of porous stainless steel fabricated by selective laser melting. J Mater Process Technol, 2018, 262: 41 doi: 10.1016/j.jmatprotec.2018.06.027
    [9]
    Huang W, Jiang L, Zhou C X, et al. The lubricant retaining effect of micro-dimples on the sliding surface of PDMS. Tribol Int, 2012, 52: 87 doi: 10.1016/j.triboint.2012.03.003
    [10]
    Li C C, Yang X F, Wang S R, et al. Study on friction and lubrication characteristics of surface with unidirectional convergence texture. Coatings, 2019, 9(12): 780 doi: 10.3390/coatings9120780
    [11]
    黃明吉, 楊穎超, 馮少川. SLM成形316L工藝對滑動磨損特性及硬度的影響. 表面技術, 2020, 49(1):221

    Huang M J, Yang Y C, Feng S C. Effect of 316L SLM forming process on sliding wear characteristics and hardness. Surf Technol, 2020, 49(1): 221
    [12]
    Zhang B C, Coddet C. Selective laser melting of iron powder: Observation of melting mechanism and densification behavior via point-track-surface-part research. J Manuf Sci Eng, 2016, 138(5): 051001 doi: 10.1115/1.4031366
    [13]
    Huang M J, Zhang Z X, Chen P. Effect of selective laser melting process parameters on microstructure and mechanical properties of 316L stainless steel helical micro-diameter spring. Int J Adv Manuf Technol, 2019, 104(5-8): 2117 doi: 10.1007/s00170-019-03928-3
    [14]
    Grützmacher P G, Rammacher S, Rathmann D, et al. Interplay between microstructural evolution and tribo-chemistry during dry sliding of metals. Friction, 2019, 7(6): 637 doi: 10.1007/s40544-019-0259-5
    [15]
    萬軼, 李建亮, 熊黨生. 滑動速度對織構化表面潤滑狀態的影響. 中南大學學報(自然科學版), 2015, 46(12):4442 doi: 10.11817/j.issn.1672-7207.2015.12.008

    Wan Y, Li J L, Xiong D S. Influence of sliding velocity on lubrication state of surface texturing. J Central South Univ Sci Tech, 2015, 46(12): 4442 doi: 10.11817/j.issn.1672-7207.2015.12.008
    [16]
    任浩巖, 解國良, 劉新華. Cu–(Fe–C)合金中Fe–C相的固態轉變對其摩擦磨損行為及機理的影響. 工程科學學報, 2020, 42(9):1190

    Ren H Y, Xie G L, Liu X H. Effect of the solid-state transition of Fe–C phase on the friction and wear behavior and Mechanism of Cu–(Fe–C) alloys. Chin J Eng, 2020, 42(9): 1190
    [17]
    Yan X C, Gao S H, Chang C, et al. Microstructure and tribological property of selective laser melted Fe?Mn?Al?C alloy. Mater Lett, 2020, 270: 127699 doi: 10.1016/j.matlet.2020.127699
    [18]
    Sun Y, Bailey R, Moroz A. Surface finish and properties enhancement of selective laser melted 316L stainless steel by surface mechanical attrition treatment. Surf Coat Technol, 2019, 378: 124993 doi: 10.1016/j.surfcoat.2019.124993
    [19]
    任曉燕, 張國偉, 徐宏, 等. ZCuPb20Sn5合金耐磨性能研究. 摩擦學學報, 2020, 40(4):467

    Ren X Y, Zhang G W, Xu H, et al. Wear resistance of ZCuPb20Sn5 alloy. Tribology, 2020, 40(4): 467
    [20]
    Li H, Ramezani M, Li M, et al. Tribological performance of selective laser melted 316L stainless steel. Tribol Int, 2018, 128: 121 doi: 10.1016/j.triboint.2018.07.021
    [21]
    Lin L Y, Ecke N, Kamerling S, et al. Study on the impact of graphene and cellulose nanocrystal on the friction and wear properties of SBR/NR composites under dry sliding conditions. Wear, 2018, 414-415: 43 doi: 10.1016/j.wear.2018.07.027
    [22]
    Lates M T, Velicu R, Gavrila C C. Temperature, pressure, and velocity influence on the tribological properties of PA66 and PA46 polyamides. Materials, 2019, 12(20): 3452 doi: 10.3390/ma12203452
    [23]
    Li H, Ramezani M, Li M, et al. Effect of process parameters on tribological performance of 316L stainless steel parts fabricated by selective laser melting. Manuf Lett, 2018, 16: 36 doi: 10.1016/j.mfglet.2018.04.003
    [24]
    陳旭斌, 葛翔, 祝毅, 等. 選擇性激光熔化零件微觀結構及摩擦學性能研究. 機械工程學報, 2018, 54(3):63 doi: 10.3901/JME.2018.03.063

    Chen X B, Ge X, Zhu Y, et al. A study on microstructure and tribology performance of samples processed by selective laser melting (SLM). J Mech Eng, 2018, 54(3): 63 doi: 10.3901/JME.2018.03.063
    [25]
    Liu Y S, Zhai X M, Deng Y P, et al. Tribological property of selective laser melting-processed 316L stainless steel against filled PEEK under water lubrication. Tribol Trans, 2019, 62(6): 962 doi: 10.1080/10402004.2019.1635671
    [26]
    Zhu Y, Zou J, Chen X, et al. Tribology of selective laser melting processed parts: Stainless steel 316 L under lubricated conditions. Wear, 2016, 350-351: 46 doi: 10.1016/j.wear.2016.01.004
    [27]
    Yang Y, Zhu Y, Khonsari M M, et al. Wear anisotropy of selective laser melted 316L stainless steel. Wear, 2019, 428-429: 376 doi: 10.1016/j.wear.2019.04.001
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (725) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频