<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
LI Xiao-xuan, WANG Zeng-jie, HE Ding-yong, LIU Xuan, XUE Ji-lai. Nonequilibrium solidification microstructures and mechanical properties of selective laser-melted Cu–Sn alloy[J]. Chinese Journal of Engineering, 2021, 43(8): 1100-1106. doi: 10.13374/j.issn2095-9389.2020.10.29.006
Citation: LI Xiao-xuan, WANG Zeng-jie, HE Ding-yong, LIU Xuan, XUE Ji-lai. Nonequilibrium solidification microstructures and mechanical properties of selective laser-melted Cu–Sn alloy[J]. Chinese Journal of Engineering, 2021, 43(8): 1100-1106. doi: 10.13374/j.issn2095-9389.2020.10.29.006

Nonequilibrium solidification microstructures and mechanical properties of selective laser-melted Cu–Sn alloy

doi: 10.13374/j.issn2095-9389.2020.10.29.006
More Information
  • Corresponding author: E-mail: wangzj@bjut.edu.cn
  • Received Date: 2020-10-29
    Available Online: 2020-12-22
  • Publish Date: 2021-08-25
  • Cu-based alloys can be used as a selective laser melting (SLM) material for advanced engineering applications, such as aerospace, 5G mobile networks, and high-speed transportation. The mechanical properties and solidification microstructures of Cu alloys prepared using the casting technique differ from those prepared using the SLM technique, and SLM-built alloys can involve more complex microstructures and phase transformations developed in micromolten pools produced by high-power laser beams. However, nonequilibrium solidification microstructures and mechanical properties of SLM-built Cu–Sn alloys have seldom been studied in the literature. In this work, the Cu–5%Sn alloy was investigated using the SLM technique, along with cast Cu–Sn alloys for comparison. The high quality Cu-based alloy samples were fabricated using the SLM technique, with optimized processing parameters of 160 W laser power, 300 mm·s?1 scanning speed, and 0.07 mm line spacing. The samples exhibit a relative density of 99.2%, and virtually no pores and spheroidizing phenomena or warping defects were observed. The microstructural analysis of SLM-built Cu–5% Sn alloy reveals a nonequilibrium solidification feature under high cooling rates and rapid alternative thermal conditions during the SLM fabrication process, in which the α-Cu(Sn) solid solution is the major phase along with γ and δ phases. Columnar grains and reticular microstructures dominate the solidified SLM-built alloy, while segregated Sn appears in the boundaries of all levels within the alloys. The Sn-rich nanoparticles with super-lattice structures precipitates along the grain boundaries and inside the grains. With the combined effects of grain fining, super-lattice-structured nanoparticles precipitation, solid solution, and thermal residual stress, the SLM-built Cu–5%Sn alloy shows significantly enhanced mechanical properties, such as HV 133.83 Vickers hardness, 326 MPa yield strength, 387 MPa tensile strength, and 22.7% fracture extension. Such scientific information is very useful for improving the alloy composition design and optimizing the SLM processing parameters.

     

  • loading
  • [1]
    Tuncer N, Bose A. Solid-state metal additive manufacturing: A review. JOM, 2020, 72(9): 3090 doi: 10.1007/s11837-020-04260-y
    [2]
    Tan Z, Zhang X Y, Zhou Z L, et al. Thermal effect on the microstructure of the lattice structure Cu?10Sn alloy fabricated through selective laser melting. J Alloys Compd, 2019, 787: 903 doi: 10.1016/j.jallcom.2019.02.196
    [3]
    李昂, 劉雪峰, 俞波, 等. 金屬增材制造技術的關鍵因素及發展方向. 工程科學學報, 2019, 41(2):159

    Li A, Liu X F, Yu B, et al. Key factors and developmental directions with regard to metal additive manufacturing. Chin J Eng, 2019, 41(2): 159
    [4]
    白玉超, 楊永強, 王迪, 等. 錫青銅激光選區熔化工藝及其性能. 稀有金屬材料與工程, 2018, 47(3):1007

    Bai Y C, Yang Y Q, Wang D, et al. Selective laser melting of Tin bronze alloy and its properties. Rare Met Mater Eng, 2018, 47(3): 1007
    [5]
    山本貴文, 湯田稜也, J 長. レーザ積層造形により作製した Cu?Sn系合金造形體の金屬組織と機械的特性に及ぼす熱処理の影響. 銅と銅合金: 銅及び銅合金技術研究會誌, 2018, 57(1):137

    Yamamoto T, Yuda R, Nagae T. Effect of heat treatment on microstructure and mechanical properties of Cu?Sn alloys fabricated by selective laser melting. J Jpn Inst Copper, 2018, 57(1): 137
    [6]
    Mao Z F, Zhang D Z, Jiang J J, et al. Processing optimization, mechanical properties and microstructural evolution during selective laser melting of Cu?15Sn high-tin bronze. Mater Sci Eng A, 2018, 721: 125 doi: 10.1016/j.msea.2018.02.051
    [7]
    Scudino S, Unterdorfer C, Prashanth K G, et al. Additive manufacturing of Cu?10Sn bronze. Mater Lett, 2015, 156: 202 doi: 10.1016/j.matlet.2015.05.076
    [8]
    Gustmann T, dos Santos J M, Gargarella P, et al. Properties of Cu-based shape memory alloys prepared by selective laser melting. Shape Memory Superelast, 2017, 3(1): 24 doi: 10.1007/s40830-016-0088-6
    [9]
    Yan M, Wu Y C, Chen J C, et al. Microstructure evolution in preparation of Cu?Sn contact wire for high-speed railway. Adv Mater Res, 2011, 415-417: 446 doi: 10.4028/www.scientific.net/AMR.415-417.446
    [10]
    Ventura A P. Microstructure Evolution and Mechanical Property Development of Selective Laser Melted Cooper Alloys [Dissertation]. Bethlehem: Lehigh University, 2017
    [11]
    Walker D C, Caley W F, Brochu M. Selective laser sintering of composite copper-tin powders. J Mater Res, 2014, 29(17): 1997 doi: 10.1557/jmr.2014.194
    [12]
    羅繼輝. 兩相區連鑄銅錫合金的化學成分和組織性能變化規律及機理[學位論文]. 北京: 北京科技大學, 2017

    Luo J H. Evolution and Mechanism of Chemical Composition, Microstructure and Properties for Two-phase Zone Continuous Casting Cu–Sn Alloy [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
    [13]
    周鑫. 激光選區熔化微尺度熔池特性與凝固微觀組織[學位論文]. 北京: 清華大學, 2016

    Zhou X. Research on Micro-scale Melt Pool Characteristics and Solidified Microstructures in Selective Laser Melting [Dissertation]. Beijing: Tsinghua University, 2016
    [14]
    Zhang L, Liu Z Q. Inhibition of Intermetallic compounds growth at Sn?58Bi/Cu interface bearing CuZnAl memory particles(2?6 μm). J Mater Sci Mater Electron, 2020, 31(3): 2466 doi: 10.1007/s10854-019-02784-x
    [15]
    Li X, Ivas T, Spierings A B, et al. Phase and microstructure formation in rapidly solidified Cu?Sn and Cu?Sn?Ti alloys. J Alloys Compd, 2018, 735: 1374 doi: 10.1016/j.jallcom.2017.11.237
    [16]
    Zhai W, Wang W L, Geng D L, et al. A DSC analysis of thermodynamic properties and solidification characteristics for binary Cu?Sn alloys. Acta Mater, 2012, 60(19): 6518 doi: 10.1016/j.actamat.2012.08.013
    [17]
    Wang Z J, Konno T J. Discontinuous precipitation with metastable ζ phase in a Cu?8.6%Sn alloy. Philos Mag, 2013, 93(8): 949 doi: 10.1080/14786435.2012.738940
    [18]
    Yin Z Z, Sun F L, Guo M J. The fast formation of Cu?Sn intermetallic compound in Cu/Sn/Cu system by introduction heating process. Mater Lett, 2018, 215: 207 doi: 10.1016/j.matlet.2017.12.102
    [19]
    Wang Z J, Konno T J. Comparative TEM study on as-cast ingot and nodular bainite of Cu?14.9%Sn alloy. Philos Mag, 2014, 94(4): 420 doi: 10.1080/14786435.2013.853886
    [20]
    李想, 薛濟來, 郎光輝, 等. 鋁用石墨質陰極不同焙燒溫度下孔隙結構演化. 北京科技大學學報, 2014, 36(9):1233

    Li X, Xue J L, Lang G H, et al. Porous structure evolution of graphitic cathode materials for aluminum electrolysis at various baking temperatures. J Univ Sci Technol Beijing, 2014, 36(9): 1233
    [21]
    Wang X F, Zhao J Z, He J, et al. Microstructural features and mechanical properties induced by the spray forming and cold rolling of the Cu?13.5wt pct Sn alloy. J Mater Sci Technol, 2008, 24(5): 803
    [22]
    Saunders N, Miodownik A P. The Cu?Sn(Copper?Tin) system. Bull Alloy Phase Diagrams, 1990, 11(3): 278 doi: 10.1007/BF03029299
    [23]
    Fürtauer S, Li D, Cupid D, et al. The Cu–Sn phase diagram, Part I: New experimental results. Intermetallics, 2013, 34: 142 doi: 10.1016/j.intermet.2012.10.004
    [24]
    Wang Z J, Toyohiko T J, Ma C L. Comparative TEM investigation on the precipitation behaviors in Cu?15wt%Sn alloy. Rare Met, 2013, 32(2): 139 doi: 10.1007/s12598-013-0033-1
    [25]
    Mao Z F, Zhang D Z, Wei P T, et al. Manufacturing feasibility and forming properties of Cu?4Sn in selective laser melting. Materials, 2017, 10(4): 333 doi: 10.3390/ma10040333
    [26]
    Ventura A P, Wade C A, Pawlikowski G, et al. Mechanical properties and microstructural characterization of Cu?4.3 Pct Sn fabricated by selective laser melting. Metall Mater Trans A, 2017, 48(1): 178 doi: 10.1007/s11661-016-3779-x
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (1215) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频