<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
MU Liang, ZHAO Hong, LI Yan, QIU Jun-zheng, SUN Chuan-long, LIU Xiao-Tong. Vehicle recognition based on gradient compression and YOLO v4 algorithm[J]. Chinese Journal of Engineering, 2022, 44(5): 940-950. doi: 10.13374/j.issn2095-9389.2020.10.28.006
Citation: MU Liang, ZHAO Hong, LI Yan, QIU Jun-zheng, SUN Chuan-long, LIU Xiao-Tong. Vehicle recognition based on gradient compression and YOLO v4 algorithm[J]. Chinese Journal of Engineering, 2022, 44(5): 940-950. doi: 10.13374/j.issn2095-9389.2020.10.28.006

Vehicle recognition based on gradient compression and YOLO v4 algorithm

doi: 10.13374/j.issn2095-9389.2020.10.28.006
More Information
  • Corresponding author: E-mail: qdlizh@163.com
  • Received Date: 2020-10-28
    Available Online: 2021-02-26
  • Publish Date: 2022-05-25
  • Intelligent transportation systems (ITS) are the development direction of future transportation systems. ITS can effectively reduce traffic load and environmental pollution and ensure traffic safety, which has been a concern in all countries. In the field of intelligent transportation, vehicle detection has always been a hot spot but a difficult matter. To further improve the generalization, robustness, and real-time performance of the intelligent transportation system for the recognition of vehicles and different vehicle types, this study proposes an improved vehicle detection algorithm and chooses a road in the city as the background of the article. According to the characteristics of the detection region, the data set is constructed pertinently and the data set size is reduced using a video frame extraction method, aiming at achieving better detection performance with less training cost. The updating method of cosine decay with warm-up (CD) learning rate is then changed. An Adam gradient compression (GC) based on GC is proposed to improve the training speed, detection accuracy, and generalization ability of the YOLO v4 algorithm. To verify the effectiveness of the proposed algorithm, the trained network model is used to verify the quantitative vehicle type detection experiment of different density traffic flows after collecting the traffic flow information under actual road conditions. Experimental results show that the overall detection of the improved method is better than that of the original method. The accuracy rates of the network models trained by YOLO v4 and YOLO v4 GC CD under the blocking flow samples, synchronous flow samples, and free flow samples are 94.59% and 96.46%, 95.34% and 97.20%, 95.98%, and 97.88%, respectively. Simultaneously, the detection effect of YOLOV4 GC CD was verified at night and on rainy days with an accuracy rate of 92.06% and 95.51%, respectively.

     

  • loading
  • [1]
    Mu S D, Xiong Z X, Tian Y X. Intelligent traffic control system based on cloud computing and big data mining. IEEE Trans Ind Inf, 2019, 15(12): 6583 doi: 10.1109/TII.2019.2929060
    [2]
    Meng C C, Bao H, Ma Y. Vehicle detection: A review // The 2020 3rd International Conference on Computer Information Science and Application Technology (CISAT). Dali, 2020: 012107.
    [3]
    Li X, Liu Z Q, Leung K M. Detection of vehicles from traffic scenes using fuzzy integrals. Pattern Recognit, 2002, 35(4): 967 doi: 10.1016/S0031-3203(01)00079-6
    [4]
    Wei X, Liu S F, Xiang Y C, et al. Incremental learning based multi-domain adaptation for object detection. Knowl Based Syst, 2020, 210: 106420 doi: 10.1016/j.knosys.2020.106420
    [5]
    Rohlfing M L, Buckley D P, Piraquive J, et al. Hey siri: How effective are common voice recognition systems at recognizing dysphonic voices? Laryngoscope, 2021, 131(7): 1599
    [6]
    曾娟, 李守義, 張洪昌. 圖像分區域多特征融合斜向車輛檢測算法研究. 公路交通科技, 2020, 37(8):99 doi: 10.3969/j.issn.1002-0268.2020.08.013

    Zeng J, Li S Y, Zhang H C. Study on sub-region multi-feature image fusion oblique vehicle detection algorithm. J Highw Transp Res Dev, 2020, 37(8): 99 doi: 10.3969/j.issn.1002-0268.2020.08.013
    [7]
    馬泊寧. 基于視頻流的車輛跟蹤算法研究[學位論文]. 成都: 電子科技大學, 2020

    Ma B N. Research on Vehicle Tracking Based on Video Streaming [Dissertation]. Chengdu: University of Electronic Science and Technology of China, 2020
    [8]
    Cai Y F, Liu Z, Wang H, et al. Vehicle detection by fusing part model learning and semantic scene information for complex urban surveillance. Sensors, 2018, 18(10): 3505 doi: 10.3390/s18103505
    [9]
    Cao J W, Song C X, Song S X, et al. Front vehicle detection algorithm for smart car based on improved SSD model. Sensors, 2020, 20(16): 4646 doi: 10.3390/s20164646
    [10]
    Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput Electron Agric, 2019, 157: 417 doi: 10.1016/j.compag.2019.01.012
    [11]
    Xie H S, Wu Z S. A robust fabric defect detection method based on improved RefineDet. Sensors, 2020, 20(15): 4260 doi: 10.3390/s20154260
    [12]
    史磊, 荊明娥, 范益波, 等. 基于R-CNN算法的分割檢測算法. 復旦學報(自然科學版), 2020, 59(4):412

    Shi L, Jing M E, Fan Y B, et al. Segmentation detection algorithm based on R-CNN algorithm. J Fudan Univ Nat Sci, 2020, 59(4): 412
    [13]
    魏子洋, 趙志宏, 趙敬嬌. 改進Faster R-CNN算法及其在車輛檢測中的應用. 應用科學學報, 2020, 38(3):377 doi: 10.3969/j.issn.0255-8297.2020.03.004

    Wei Z Y, Zhao Z H, Zhao J J. Improved faster R-CNN algorithm and its application on vehicle detection. J Appl Sci, 2020, 38(3): 377 doi: 10.3969/j.issn.0255-8297.2020.03.004
    [14]
    胡增輝. 基于深度學習的3D物體檢測[學位論文]. 西安: 西安電子科技大學, 2018

    Hu Z H. 3D Object Detection Based on Deep Learning [Dissertation]. Xi'an: Xidian University, 2018
    [15]
    趙坤, 劉立, 孟宇, 等. 弱光照條件下交通標志檢測與識別. 工程科學學報, 2020, 42(8):1074

    Zhao K, Liu L, Meng Y, et al. Traffic signs detection and recognition under low-illumination conditions. Chin J Eng, 2020, 42(8): 1074
    [16]
    曹凱寧. 基于深度學習的車輛目標檢測[學位論文]. 長春: 吉林大學, 2019

    Cao K N. Detection of Vehicle Target Based on Deep Learning [Dissertation]. Changchun: Jilin University, 2019
    [17]
    Misra D. Mish. A self regularized non-monotonic activation function[J/OL]. arXiv preprint online (2019-08-23) [2020-10-28].https://arxiv.org/abs/1908.08681
    [18]
    Zou D F, Cao Y, Zhou D R, et al. Gradient descent optimizes over-parameterized deep ReLU networks. Mach Learn, 2020, 109(3): 467 doi: 10.1007/s10994-019-05839-6
    [19]
    Kalayeh M M, Shah M. Training faster by separating modes of variation in batch-normalized models. IEEE Trans Pattern Anal Mach Intell, 2020, 42(6): 1483 doi: 10.1109/TPAMI.2019.2895781
    [20]
    Qiao S, Wang H, Liu C, et al. Weight Standardization [J/OL]. arXiv preprint online (2019-05-25) [2020-10-28].https://arxiv.org/abs/1903.10520v1
    [21]
    Cheng K Y, Tao F, Zhan Y Z, et al. Hierarchical attributes learning for pedestrian re-identification via parallel stochastic gradient descent combined with momentum correction and adaptive learning rate. Neural Comput Appl, 2020, 32(10): 5695 doi: 10.1007/s00521-019-04485-2
    [22]
    Melinte D O, Vladareanu L. Facial expressions recognition for human–robot interaction using deep convolutional neural networks with rectified Adam optimizer. Sensors, 2020, 20(8): 2393 doi: 10.3390/s20082393
    [23]
    Gupta H, Jin K H, Nguyen H Q, et al. CNN-based projected gradient descent for consistent CT image reconstruction. IEEE Trans Med Imaging, 2018, 37(6): 1440 doi: 10.1109/TMI.2018.2832656
    [24]
    賀昱曜, 李寶奇. 一種組合型的深度學習模型學習率策略. 自動化學報, 2016, 42(6):953

    He Y Y, Li B Q. A combinatory form learning rate scheduling for deep learning model. Acta Autom Sin, 2016, 42(6): 953
    [25]
    Li X, Zhao Z F, Liu L, et al. An optimization model of multi-intersection signal control for trunk road under collaborative information. J Control Sci Eng, 2017, 2017: 1
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article views (1034) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频