<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
WANG Huai-bin, LI Yang, WANG Qin-zheng, DU Zhi-ming, FENG Xu-ning. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse[J]. Chinese Journal of Engineering, 2021, 43(5): 663-675. doi: 10.13374/j.issn2095-9389.2020.10.27.002
Citation: WANG Huai-bin, LI Yang, WANG Qin-zheng, DU Zhi-ming, FENG Xu-ning. Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse[J]. Chinese Journal of Engineering, 2021, 43(5): 663-675. doi: 10.13374/j.issn2095-9389.2020.10.27.002

Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse

doi: 10.13374/j.issn2095-9389.2020.10.27.002
More Information
  • Traction battery is the core component of the electric vehicle. To obtain longer driving ranges, conventional lithium-ion batteries with LiMn2O4, LiCoO2, and LiFePO4 cathodes were gradually replaced by LiNixCoyMn1?x?yO2 batteries. With the increasing energy density and chemical activity of the lithium-ion traction battery, its thermal stability gradually decreases and safety hazards become increasingly serious. In recent years, thermal runaway incidents with traction batteries have occurred frequently at home and abroad, seriously disturbing the development of electric vehicles. Solving the safety problems associated with thermal runaway(TR) and thermal runaway propagation(TRP) of the lithium-ion battery is urgent. In this paper, TR and its propagation behavior, associated with a 42 A·h prismatic lithium-ion battery with a LiNi1/3Co1/3Mn1/3O2 cathode for electric vehicles, were studied under thermal abuse conditions on the cell and module levels. The results indicate that the maximum temperature approaches 920 ℃ inside the cell. The maximum temperature difference is up to 403 ℃ within the cell during TR, and the maximum temperature rise rate inside the cell is 40 ℃·s?1. The TRP time within a lithium-ion battery is 8–12 s under 100% state-of-charge (SOC), and the duration of the vent is 14–18 s. The temperature characteristics of the lithium-ion battery display large differences for the TRP test and adiabaticTR test. In a propagation test, the TR initiates from a forward surface toward the failure point, whereas under the adiabatic test the TR occurs simultaneously in the cell. More than 80% of the particles vented from the cell are LiF and graphite during the adiabatic test. Approximately 90% of the heat released by the TR is used for heating the residual and venting particles of the cell. The study offers a reference guide for the safety design and mitigation strategy of TRP in lithium-ion battery modules, and accident investigations of new energy vehicles.

     

  • loading
  • [1]
    國務院辦公廳. 新能源汽車產業發展規劃(2021—2035年)[EB/OL]. 中國政府網 (2020-11-02) [2020-10-20]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm

    General Office of the State Council of the People’s Republic of China. Development Plan of New Energy Automobile Industry (2021—2035)[EB/OL]. www.gov.cn (2020-11-02)[2020-10-20]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm
    [2]
    Mao B B, Huang P F, Chen H D, et al. Self-heating reaction and thermal runaway criticality of the lithiumion battery. Int J Heat Mass Transfer, 2020, 149: 119178 doi: 10.1016/j.ijheatmasstransfer.2019.119178
    [3]
    王爽, 杜志明, 張澤林, 等. 鋰離子電池安全性研究進展. 工程科學學報, 2018, 40(8):901

    Wang S, Du Z M, Zhang Z L, et al. Research progress on safety of lithium-ion batteries. Chin J Eng, 2018, 40(8): 901
    [4]
    Fergus J W. Recent developments in cathode materials for lithium ion batteries. J Power Sources, 2010, 195(4): 939 doi: 10.1016/j.jpowsour.2009.08.089
    [5]
    孫艷霞, 周園, 申月, 等. 動力型鋰離子電池富鋰三元正極材料研究進展. 化學通報, 2017, 80(1):34

    Sun Y X, Zhou Y, Shen Y, et al. Lithium rich ternary cathode materials for dynamical type lithium ion battery. Chemistry, 2017, 80(1): 34
    [6]
    王亞平, 胡淑婉, 曹峰. 鋰離子電池正極材料研究進展. 電源技術, 2017, 41(4):638 doi: 10.3969/j.issn.1002-087X.2017.04.043

    Wang Y P, Hu S W, Cao F. Research prospect of cathode materials for lithium ion battery. Power Technol, 2017, 41(4): 638 doi: 10.3969/j.issn.1002-087X.2017.04.043
    [7]
    Feng X N, Zheng S Q, Ren D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl Energy, 2019, 246: 53 doi: 10.1016/j.apenergy.2019.04.009
    [8]
    Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater, 2018, 10: 246
    [9]
    Huang P F, Ping P, Li K, et al. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy, 2016, 183: 659 doi: 10.1016/j.apenergy.2016.08.160
    [10]
    B?rger A, Mertens J, Wenzl H. Thermal runaway and thermal runaway propagation in batteries: What do we talk about? J Energy Storage, 2019, 24: 100649 doi: 10.1016/j.est.2019.01.012
    [11]
    Lopez C F, Jeevarajan J A, Mukherjee P P. Experimental analysis of thermal runaway and propagation in lithium-ion battery modules. J Electrochem Soc, 2015, 162(9): A1905 doi: 10.1149/2.0921509jes
    [12]
    Gao S, Lu L G, Ouyang M G, et al. Experimental study on module-to-module thermal runaway-propagation in a battery pack. J Electrochem Soc, 2019, 166(10): A2065
    [13]
    Jiang Z Y, Qu Z G, Zhang J F, et al. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy. Appl Energy, 2020, 268: 115007 doi: 10.1016/j.apenergy.2020.115007
    [14]
    Feng X N, Fang M, He X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources, 2014, 255: 294
    [15]
    Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources, 2003, 113(1): 81 doi: 10.1016/S0378-7753(02)00488-3
    [16]
    Richard M N, Dahn J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental. J Electrochem Soc, 1999, 146(6): 2068 doi: 10.1149/1.1391893
    [17]
    Venugopal G. Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries. J Power Sources, 2001, 101(2): 231 doi: 10.1016/S0378-7753(01)00782-0
    [18]
    Wang H Y, Tang A D, Huang K L. Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics. Chin J Chem, 2011, 29(8): 1583
    [19]
    Zhang Y J, Wang H W, Li W F, et al. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries. eTransportation, 2019, 2: 100031 doi: 10.1016/j.etran.2019.100031
    [20]
    Larsson F, Bertilsson S, Furlani M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing. J Power Sources, 2018, 373: 220 doi: 10.1016/j.jpowsour.2017.10.085
    [21]
    Peng Y, Yang L Z, Ju X Y, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J Hazard Mater, 2020, 381: 120916
    [22]
    Li H, Duan Q L, Zhao C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode. J Hazard Mater, 2019, 375: 241 doi: 10.1016/j.jhazmat.2019.03.116
    [23]
    Wang H B, Du Z M, Rui X Y, et al. A comparative analysis on thermal runaway behavior of Li (NixCoyMnz) O2 battery with different nickel contents at cell and module level. J Hazard Mater, 2020, 393: 122361 doi: 10.1016/j.jhazmat.2020.122361
    [24]
    Wilke S, Schweitzer B, Khateeb S, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. J Power Sources, 2017, 340: 51 doi: 10.1016/j.jpowsour.2016.11.018
    [25]
    Yuan C C, Wang Q S, Wang Y, et al. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module. Appl Therm Eng, 2019, 153: 39 doi: 10.1016/j.applthermaleng.2019.02.127
    [26]
    Tao C F, Li G Y, Zhao J B, et al. The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances. J Therm Anal Calorim, 2020, 142(4): 1523 doi: 10.1007/s10973-020-09274-x
    [27]
    Wang Z, Wang J. Investigation of external heating-induced failure propagation behaviors in large-size cell modules with different phase change materials. Energy, 2020, 204: 117946
    [28]
    Niu H C, Chen C X, Ji D, et al. Thermal-runaway propagation over a linear cylindrical battery module. Fire Technol, 2020, 56(6): 2491 doi: 10.1007/s10694-020-00976-0
    [29]
    Wang H B, Du Z M, Liu L, et al. Study on the thermal runaway and its propagation of lithium-ion batteries under low pressure. Fire Technol, 2020, 56(6): 2427 doi: 10.1007/s10694-020-00963-5
    [30]
    Huang Z H, Zhao C P, Li H, et al. Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes. Energy, 2020, 205: 117906 doi: 10.1016/j.energy.2020.117906
    [31]
    馮旭寧. 車用鋰離子動力電池熱失控誘發與擴展機理、建模與防控[學位論文]. 北京: 清華大學, 2016

    Feng X N. Thermal Runaway Initiation and Propagation of Lithium-Ion Traction Battery for Electric Vehicle: test, Modeling and Prevention [Dissertation]. Beijing: Tsinghua University, 2016
    [32]
    Mao B B, Chen H D, Cui Z X, et al. Failure mechanism of the lithium ion battery during nail penetration. Int J Heat Mass Transfer, 2018, 122: 1103 doi: 10.1016/j.ijheatmasstransfer.2018.02.036
    [33]
    Feng X N, Ren D S, He X M, et al. Mitigating thermal runaway of lithium-ion batteries. Joule, 2020, 4(4): 743
    [34]
    Wang Q S, Mao B B, Stoliarov S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci, 2019, 73: 95 doi: 10.1016/j.pecs.2019.03.002
    [35]
    Liu X, Ren D S, Hsu H, et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2018, 2(10): 2047 doi: 10.1016/j.joule.2018.06.015
    [36]
    Feng X N, Sun J, Ouyang M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources, 2015, 275: 261 doi: 10.1016/j.jpowsour.2014.11.017
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(17)

    Article views (3186) PDF downloads(240) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频