<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 3
Jan.  2022
Turn off MathJax
Article Contents
ZHANG Yan-ling, MO Ting-yu, LI Song-tao, ZHANG Yan, LI Qing. A survey of evolutionary game and resource allocation[J]. Chinese Journal of Engineering, 2022, 44(3): 402-410. doi: 10.13374/j.issn2095-9389.2020.10.26.002
Citation: ZHANG Yan-ling, MO Ting-yu, LI Song-tao, ZHANG Yan, LI Qing. A survey of evolutionary game and resource allocation[J]. Chinese Journal of Engineering, 2022, 44(3): 402-410. doi: 10.13374/j.issn2095-9389.2020.10.26.002

A survey of evolutionary game and resource allocation

doi: 10.13374/j.issn2095-9389.2020.10.26.002
More Information
  • Corresponding author: E-mail: liqing@ies.ustb.edu.cn
  • Received Date: 2020-10-26
    Available Online: 2021-01-20
  • Publish Date: 2022-01-08
  • Evolutionary game theory involves multiple disciplinary sciences and has enormous scientific value and promising applicability. Collective behavior is an important topic of interdisciplinary study. Ethology has shown the ubiquity of collective behavior and has proven the rationality of evolutionary theory in explaining the emergence of collective behavior. The recent development of complex network theory offers a convenient framework for describing game interactions and competition relationships among individuals. The combination of evolutionary games and complex networks, particularly, evolutionary game theory in a complex network, has been attracting growing interest from different fields. It has undergone substantial development, especially in quantitative analysis of two-strategy competition. Under this framework, the complex network represents the population structure, and the game describes interactions between individuals. On the basis of the methodology from network science, stochastic process, and statistical physics, the framework mainly focuses on how population structures, individual behavior patterns, and interacting environments influence the emergence of collective behavior. In this paper, the mechanisms for the evolution of cooperation were given under the framework of evolutionary game, including kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection. Recently, the effects of individual heterogeneity and environmental feedback on cooperation had attracted growing interest. Next, five main theoretical methods were addressed for analyzing the evolutionary game in complex networks, including the $ \sigma $- dominance rule, the coalescing theory, the pairwise approximation, the coalescing random walk theory, and the adaptive dynamics. Particularly, the recently proposed coalescing random walk theory is suitable for analyzing the dynamics of any network structure and any update rule. Then, the studies on the evolution of fairness in ultimatum games were presented, and reasonable resource allocation is the key factor for social stability, economic development, and individual health. Finally, the challenges and further directions of studying ultimatum games in a complex network were summarized.

     

  • loading
  • [1]
    Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439): 509 doi: 10.1126/science.286.5439.509
    [2]
    王龍, 吳特, 張艷玲. 共演化博弈中的反饋機制. 控制理論與應用, 2014, 31(7):823 doi: 10.7641/CTA.2014.40059

    Wang L, Wu T, Zhang Y L. Feedback mechanism in coevolutionary games. Control Theory Appl, 2014, 31(7): 823 doi: 10.7641/CTA.2014.40059
    [3]
    Gallo E, Yan C. The effects of reputational and social knowledge on cooperation. Proc Natl Acad Sci USA, 2015, 112(12): 3647 doi: 10.1073/pnas.1415883112
    [4]
    Li X, Cao L. Largest Laplacian eigenvalue predicts the emergence of costly punishment in the evolutionary ultimatum game on networks. Phys Rev E, 2009, 80(6): 066101 doi: 10.1103/PhysRevE.80.066101
    [5]
    Doebeli M, Ispolatov Y, Simon B. Point of view: Towards a mechanistic foundation of evolutionary theory. Elife, 2019, 6: e23804
    [6]
    Goswami A, Gupta R, Parashari G S. Reputation-based resource allocation in P2P systems: A game theoretic perspective. IEEE Commun Lett, 2017, 21(6): 1273 doi: 10.1109/LCOMM.2017.2675900
    [7]
    Hilbe C, Wu B, Traulsen A, et al. Cooperation and control in multiplayer social dilemmas. Proc Natl Acad Sci USA, 2014, 111(46): 16425 doi: 10.1073/pnas.1407887111
    [8]
    Tan S L, Wang Y N. Graphical Nash equilibria and replicator dynamics on complex networks. IEEE Trans Neural Networks Learn Syst, 2020, 31(6): 1831 doi: 10.1109/TNNLS.2019.2927233
    [9]
    Julou T, Mora T, Guillon L, et al. Cell-cell contacts confine public goods diffusion inside pseudomonas aeruginosa clonal microcolonies. Proc Natl Acad Sci USA, 2013, 110(31): 12577 doi: 10.1073/pnas.1301428110
    [10]
    Qi S, Footer O, Camerer C F, et al. A collaborator's reputation can bias decisions and anxiety under uncertainty. J Neurosci, 2018, 38(9): 2262 doi: 10.1523/JNEUROSCI.2337-17.2018
    [11]
    Feng C, Luo Y J, Krueger F. Neural signatures of fairness-related normative decision making in the ultimatum game: A coordinate-based meta-analysis. Hum Brain Mapp, 2015, 36(2): 591 doi: 10.1002/hbm.22649
    [12]
    Duradoni M, Paolucci M, Bagnoli F, et al. Fairness and trust in virtual environments: The effects of reputation. Future Internet, 2018, 10(6): 50 doi: 10.3390/fi10060050
    [13]
    Jeong H C, Oh S Y, Allen B, et al. Optional games on cycles and complete graphs. J Theor Biol, 2014, 356: 98 doi: 10.1016/j.jtbi.2014.04.025
    [14]
    Melamed D, Harrell A, Simpson B. Cooperation, clustering, and assortative mixing in dynamic networks. Proc Natl Acad Sci USA, 2018, 115(5): 951 doi: 10.1073/pnas.1715357115
    [15]
    Adami C, Schossau J, Hintze A. Evolutionary game theory using agent-based methods. Phys Life Rev, 2016, 19: 1 doi: 10.1016/j.plrev.2016.08.015
    [16]
    Débarre F. Fidelity of parent-offspring transmission and the evolution of social behavior in structured populations. J Theor Biol, 2017, 420: 26 doi: 10.1016/j.jtbi.2017.02.027
    [17]
    McAvoy A, Fraiman N, Hauert C, et al. Public goods games in populations with fluctuating size. Theor Popul Biol, 2018, 121: 72 doi: 10.1016/j.tpb.2018.01.004
    [18]
    Szabó G, Borsos I. Evolutionary potential games on lattices. Phys Rep, 2016, 624: 1 doi: 10.1016/j.physrep.2016.02.006
    [19]
    Lessard S, Soares C D. Frequency-dependent growth in class-structured populations: Continuous dynamics in the limit of weak selection. J Math Biol, 2018, 77(1): 229 doi: 10.1007/s00285-017-1195-5
    [20]
    Smith J M, Price G R. The logic of animal conflict. Nature, 1973, 246(5427): 15 doi: 10.1038/246015a0
    [21]
    Khoo T, Fu F, Pauls S. Spillover modes in multiplex games: Double-edged effects on cooperation and their coevolution. Sci Rep, 2018, 8: 6922 doi: 10.1038/s41598-018-25025-3
    [22]
    Wang Q, He N R, Chen X J. Replicator dynamics for public goods game with resource allocation in large populations. Appl Math Comput, 2018, 328: 162
    [23]
    Perc M, Jordan J J, Rand D G, et al. Statistical physics of human cooperation. Phys Rep, 2017, 687: 1 doi: 10.1016/j.physrep.2017.05.004
    [24]
    Hilbe C, Martinez-Vaquero L A, Chatterjee K, et al. Memory-n strategies of direct reciprocity. Proc Natl Acad Sci USA, 2017, 114(18): 4715 doi: 10.1073/pnas.1621239114
    [25]
    程代展, 劉澤群. 有限博弈的矩陣半張量積方法. 控制理論與應用, 2019, 36(11):1812 doi: 10.7641/CTA.2019.90595

    Cheng D Z, Liu Z Q. Application of semi-tensor product of matrices to finite games. Control Theory Appl, 2019, 36(11): 1812 doi: 10.7641/CTA.2019.90595
    [26]
    Deng Z H, Nian X H. Distributed generalized Nash equilibrium seeking algorithm design for aggregative games over weight-balanced digraphs. IEEE Trans Neural Networks Learn Syst, 2019, 30(3): 695 doi: 10.1109/TNNLS.2018.2850763
    [27]
    Zhang R, Zhu Q Y. A game-theoretic approach to design secure and resilient distributed support vector machines. IEEE Trans Neural Networks Learn Syst, 2018, 29(11): 5512 doi: 10.1109/TNNLS.2018.2802721
    [28]
    Chotibut T, Nelson D R. Population genetics with fluctuating population sizes. J Stat Phys, 2017, 167(3-4): 777 doi: 10.1007/s10955-017-1741-y
    [29]
    Constable G W, Rogers T, McKane A J, et al. Demographic noise can reverse the direction of deterministic selection. Proc Natl Acad Sci USA, 2016, 113(32): 4745 doi: 10.1073/pnas.1603693113
    [30]
    Liu Y, Zhang J, An B, et al. A simulation framework for measuring robustness of incentive mechanisms and its implementation in reputation systems. Auton Agents Multi Agent Syst, 2016, 30(4): 581 doi: 10.1007/s10458-015-9296-2
    [31]
    張艷玲, 劉愛志, 孫長銀. 間接互惠與合作演化的若干問題研究進展. 自動化學報, 2018, 44(1):1

    Zhang Y L, Liu A Z, Sun C Y. Development of several studies on indirect reciprocity and the evolution of cooperation. Acta Autom Sin, 2018, 44(1): 1
    [32]
    榮智海, 許雄銳, 吳枝喜. 合作演化與網絡博弈實驗研究進展. 中國科學:物理學 力學 天文學, 2020, 50(1):118

    Rong Z H, Xu X R, Wu Z X. Experiment research on the evolution of cooperation and network game theory. Sci Sin Phys Mech Astron, 2020, 50(1): 118
    [33]
    Perc M, Gómez-Garde?es J, Szolnoki A, et al. Evolutionary dynamics of group interactions on structured populations: A review. J R Soc Interface, 2013, 10(80): 20120997 doi: 10.1098/rsif.2012.0997
    [34]
    Nowak M A. Five rules for the evolution of cooperation. Science, 2006, 314(5805): 1560 doi: 10.1126/science.1133755
    [35]
    Van Cleve J. Building a synthetic basis for kin selection and evolutionary game theory using population genetics. Theor Popul Biol, 2020, 133: 65 doi: 10.1016/j.tpb.2020.03.001
    [36]
    Allen B, Nowak M A. There is no inclusive fitness at the level of the individual. Curr Opin Behav Sci, 2016, 12: 122 doi: 10.1016/j.cobeha.2016.10.002
    [37]
    Hilbe C, Chatterjee K, Nowak M A. Partners and rivals in direct reciprocity. Nat Hum Behav, 2018, 2(7): 469 doi: 10.1038/s41562-018-0320-9
    [38]
    Donahue K, Hauser O P, Nowak M A, et al. Evolving cooperation in multichannel games. Nat Commun, 2020, 11: 3885 doi: 10.1038/s41467-020-17730-3
    [39]
    Hilbe C, Schmid L, Tkadlec J, et al. Indirect reciprocity with private, noisy, and incomplete information. Proc Natl Acad Sci USA, 2018, 115(48): 12241 doi: 10.1073/pnas.1810565115
    [40]
    Clark D, Fudenberg D, Wolitzky A. Indirect reciprocity with simple records. Proc Natl Acad Sci USA, 2020, 117(21): 11344 doi: 10.1073/pnas.1921984117
    [41]
    Hauert C, Saade C, McAvoy A. Asymmetric evolutionary games with environmental feedback. J Theor Biol, 2019, 462: 347 doi: 10.1016/j.jtbi.2018.11.019
    [42]
    Szolnoki A, Perc M. Second-order free-riding on antisocial punishment restores the effectiveness of prosocial punishment. Phys Rev X, 2017, 7(4): 041027
    [43]
    Cooney D B. Analysis of multilevel replicator dynamics for general two-strategy social dilemma. Bull Math Biol, 2020, 82(6): 66 doi: 10.1007/s11538-020-00742-x
    [44]
    McAvoy A, Allen B, Nowak M A. Social goods dilemmas in heterogeneous societies. Nat Hum Behav, 2020, 4(8): 819 doi: 10.1038/s41562-020-0881-2
    [45]
    Su Q, Li A, Wang L. Evolutionary dynamics under interactive diversity. New J Phys, 2017, 19: 103023 doi: 10.1088/1367-2630/aa8feb
    [46]
    Su Q, Zhou L, Wang L. Evolutionary multiplayer games on graphs with edge diversity. PLoS Comput Biol, 2019, 15(4): e1006947 doi: 10.1371/journal.pcbi.1006947
    [47]
    Zhou L, Li A M, Wang L. Evolution of cooperation on complex networks with synergistic and discounted group interactions. EPL, 2015, 110(6): 60006 doi: 10.1209/0295-5075/110/60006
    [48]
    Su Q, Li A, Wang L. Evolution of cooperation with interactive identity and diversity. J Theor Biol, 2018, 442: 149 doi: 10.1016/j.jtbi.2018.01.021
    [49]
    Hauser O P, Hilbe C, Chatterjee K, et al. Social dilemmas among unequals. Nature, 2019, 572(7770): 524 doi: 10.1038/s41586-019-1488-5
    [50]
    Szolnoki A, Chen X J. Environmental feedback drives cooperation in spatial social dilemmas. EPL, 2017, 120(5): 58001 doi: 10.1209/0295-5075/120/58001
    [51]
    Ak?ay E. Collapse and rescue of cooperation in evolving dynamic networks. Nat Commun, 2018, 9: 2692 doi: 10.1038/s41467-018-05130-7
    [52]
    Stewart A J, Plotkin J B. Collapse of cooperation in evolving games. Proc Natl Acad Sci USA, 2014, 111(49): 17558 doi: 10.1073/pnas.1408618111
    [53]
    Hilbe C, ?imsa ?, Chatterjee K, et al. Evolution of cooperation in stochastic games. Nature, 2018, 559(7713): 246 doi: 10.1038/s41586-018-0277-x
    [54]
    Su Q, McAvoy A, Wang L, et al. Evolutionary dynamics with game transitions. Proc Natl Acad Sci USA, 2019, 116(51): 25398 doi: 10.1073/pnas.1908936116
    [55]
    Weitz J S, Eksin C, Paarporn K, et al. An oscillating tragedy of the commons in replicator dynamics with game-environment feedback. Proc Natl Acad Sci USA, 2016, 113(47): E7518 doi: 10.1073/pnas.1604096113
    [56]
    陳鵬, 李擎, 張德政, 等. 多模態學習方法綜述. 工程科學學報, 2020, 42(5):557

    Chen P, Li Q, Zhang D Z, et al. A survey of multimodal machine learning. Chin J Eng, 2020, 42(5): 557
    [57]
    Lin Y H, Weitz J S. Spatial interactions and oscillatory tragedies of the commons. Phys Rev Lett, 2019, 122(14): 148102 doi: 10.1103/PhysRevLett.122.148102
    [58]
    Chen X, Szolnoki A. Punishment and inspection for governing the commons in a feedback-evolving game. PLoS Comput Biol, 2018, 14(7): e1006347 doi: 10.1371/journal.pcbi.1006347
    [59]
    Nowak M A, May R M. Evolutionary games and spatial chaos. Nature, 1992, 359(6398): 826 doi: 10.1038/359826a0
    [60]
    Barabási A L. Scale-free networks: A decade and beyond. Science, 2009, 325(5939): 412 doi: 10.1126/science.1173299
    [61]
    McAvoy A, Adlam B, Allen B, et al. Stationary frequencies and mixing times for neutral drift processes with spatial structure. Proc R Soc A, 2018, 474(2218): 20180238 doi: 10.1098/rspa.2018.0238
    [62]
    Liu J Z, Meng H R, Wang W, et al. Evolution of cooperation on independent networks: The influence of asymmetric information sharing updating mechanism. Appl Math Comput, 2019, 340: 234
    [63]
    Deng Z H, Huang Y J, Gu Z Y, et al. Multi-games on interdependent networks and the evolution of cooperation. Phys A, 2018, 510: 83 doi: 10.1016/j.physa.2018.06.120
    [64]
    Zhao J Q, Luo C, Zheng Y J. Evolutionary dynamics of the cooperation clusters on interdependent networks. Phys A, 2019, 517: 132 doi: 10.1016/j.physa.2018.11.018
    [65]
    Chu C, Hu X, Shen C, et al. Self-organized interdependence among populations promotes cooperation by means of coevolution. Chaos, 2019, 29(1): 013139 doi: 10.1063/1.5059360
    [66]
    Szolnoki A, Perc M. Information sharing promotes prosocial behaviour. New J Phys, 2013, 15(5): 053010 doi: 10.1088/1367-2630/15/5/053010
    [67]
    Szolnoki A, Chen X. Reciprocity-based cooperative phalanx maintained by overconfident players. Phys Rev E, 2018, 98(2-1): 022309
    [68]
    Xia C Y, Li X P, Wang Z, et al. Doubly effects of information sharing on interdependent network reciprocity. New J Phys, 2018, 20(7): 075005 doi: 10.1088/1367-2630/aad140
    [69]
    Ibsen-Jensen R, Chatterjee K, Nowak M A. Computational complexity of ecological and evolutionary spatial dynamics. Proc Natl Acad Sci USA, 2015, 112(51): 15636 doi: 10.1073/pnas.1511366112
    [70]
    Tarnita C E, Wage N, Nowak M A. Multiple strategies in structured populations. Proc Natl Acad Sci USA, 2011, 108(6): 2334 doi: 10.1073/pnas.1016008108
    [71]
    Antal T, Ohtsuki H, Wakeley J, et al. Evolution of cooperation by phenotypic similarity. Proc Natl Acad Sci USA, 2009, 106(21): 8597 doi: 10.1073/pnas.0902528106
    [72]
    Zhang Y, Liu A, Sun C. Impact of migration on the multi-strategy selection in finite group-structured populations. Sci Rep, 2016, 6: 35114 doi: 10.1038/srep35114
    [73]
    Ohtsuki H, Hauert C, Lieberman E, et al. A simple rule for the evolution of cooperation on graphs and social networks. Nature, 2006, 441(7092): 502 doi: 10.1038/nature04605
    [74]
    Allen B, Lippner G, Chen Y T, et al. Evolutionary dynamics on any population structure. Nature, 2017, 544(7649): 227 doi: 10.1038/nature21723
    [75]
    Allen B, McAvoy A. A mathematical formalism for natural selection with arbitrary spatial and genetic structure. J Math Biol, 2019, 78(4): 1147 doi: 10.1007/s00285-018-1305-z
    [76]
    Allen B, Nowak M. Games on graphs. EMS Surv Math Sci, 2014, 1(1): 113 doi: 10.4171/EMSS/3
    [77]
    Zhang Y L, Fu F, Wu T, et al. A tale of two contribution mechanisms for nonlinear public goods. Sci Rep, 2013, 3: 2021 doi: 10.1038/srep02021
    [78]
    Debove S, Baumard N, André J B. Models of the evolution of fairness in the ultimatum game: A review and classification. Evol Hum Behav, 2016, 37(3): 245 doi: 10.1016/j.evolhumbehav.2016.01.001
    [79]
    Santos F P, Santos F C, Paiva A, et al. Evolutionary dynamics of group fairness. J Theor Biol, 2015, 378: 96 doi: 10.1016/j.jtbi.2015.04.025
    [80]
    Takesue H, Ozawa A, Morikawa S. Evolution of favoritism and group fairness in a co-evolving three-person ultimatum game. EPL, 2017, 118(4): 48002 doi: 10.1209/0295-5075/118/48002
    [81]
    Page K M, Nowak M A, Sigmund K. The spatial ultimatum game. Proc R Soc Lond B, 2000, 267(1458): 2177 doi: 10.1098/rspb.2000.1266
    [82]
    Alexander J M K. The Structural Evolution of Morality. Cambridge University Press, 2007
    [83]
    Iranzo J, Román J, Sánchez A. The spatial Ultimatum game revisited. J Theor Biol, 2011, 278(1): 1 doi: 10.1016/j.jtbi.2011.02.020
    [84]
    Gao J, Li Z, Wu T, et al. The coevolutionary ultimatum game. EPL, 2011, 93(4): 48003 doi: 10.1209/0295-5075/93/48003
    [85]
    Wang X F, Chen X J, Wang L. Evolutionary dynamics of fairness on graphs with migration. J Theor Biol, 2015, 380: 103 doi: 10.1016/j.jtbi.2015.05.020
    [86]
    Szolnoki A, Perc M, Szabó G. Accuracy in strategy imitations promotes the evolution of fairness in the spatial ultimatum game. EPL, 2012, 100(2): 28005 doi: 10.1209/0295-5075/100/28005
    [87]
    Han X, Cao S, Bao J Z, et al. Equal status in Ultimatum Games promotes rational sharing. Sci Rep, 2018, 8(1): 1222 doi: 10.1038/s41598-018-19503-x
    [88]
    Rand D G, Tarnita C E, Ohtsuki H, et al. Evolution of fairness in the one-shot anonymous Ultimatum Game. Proc Natl Acad Sci USA, 2013, 110(7): 2581 doi: 10.1073/pnas.1214167110
    [89]
    Killingback T, Studer E. Spatial Ultimatum Games, collaborations and the evolution of fairness. Proc Biol Sci, 2001, 268(1478): 1797 doi: 10.1098/rspb.2001.1697
    [90]
    Wu T, Fu F, Zhang Y, et al. Adaptive role switching promotes fairness in networked ultimatum game. Sci Rep, 2013, 3: 1550 doi: 10.1038/srep01550
    [91]
    Yang Z H, Li Z, Wu T, et al. Effects of partner choice and role assignation in the spatial ultimatum game. EPL, 2015, 109(4): 40013 doi: 10.1209/0295-5075/109/40013
    [92]
    Forber P, Smead R. The evolution of fairness through spite. Proc Biol Sci, 2014, 281(1780): 20132439
    [93]
    Zhang Y L, Fu F. Strategy intervention for the evolution of fairness. PLoS One, 2018, 13(5): e0196524 doi: 10.1371/journal.pone.0196524
    [94]
    Szolnoki A, Perc M, Szabó G. Defense mechanisms of empathetic players in the spatial ultimatum game. Phys Rev Lett, 2012, 109(7): 078701 doi: 10.1103/PhysRevLett.109.078701
    [95]
    Page K M, Nowak M A. Empathy leads to fairness. Bull Math Biol, 2002, 64(6): 1101 doi: 10.1006/bulm.2002.0321
    [96]
    Zhang Y L, Liu J, Li A M. Effects of empathy on the evolutionary dynamics of fairness in group-structured systems. Complexity, 2019, 2019: 2915020
    [97]
    Wang X, Chen X, Wang L. Random allocation of pies promotes the evolution of fairness in the Ultimatum Game. Sci Rep, 2014, 4: 4534
    [98]
    Chen W, Wu T, Li Z W, et al. Heterogenous allocation of chips promotes fairness in the Ultimatum Game. EPL, 2015, 109(6): 68006 doi: 10.1209/0295-5075/109/68006
    [99]
    Zhang Y L, Chen X J, Liu A Z, et al. The effect of the stake size on the evolution of fairness. Appl Math Comput, 2018, 321: 641
    [100]
    Deng L L, Lin Y, Wang C, et al. Effects of coupling strength and coupling schemes between interdependent lattices on the evolutionary ultimatum game. Phys A, 2020, 540: 123173 doi: 10.1016/j.physa.2019.123173
    [101]
    Zhao Y K, Xiong T, Zheng L, et al. The effect of similarity on the evolution of fairness in the ultimatum game. Chaos Soliton Fract, 2020, 131: 109494 doi: 10.1016/j.chaos.2019.109494
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(2)

    Article views (1314) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频