Citation: | LIU Shuai, ZHAO Hui, LIU Qing-yu. Active and variable stiffness adjustment strategy for legs of quadruped robot for stable transition between soft and hard ground[J]. Chinese Journal of Engineering, 2022, 44(3): 420-429. doi: 10.13374/j.issn2095-9389.2020.10.23.001 |
[1] |
Gao Z H, Shi Q, Fukuda T, et al. An overview of biomimetic robots with animal behaviors. Neurocomputing, 2019, 332: 339 doi: 10.1016/j.neucom.2018.12.071
|
[2] |
王興興. 新型電驅式四足機器人研制與測試. 上海: 上海大學, 2016
Wang X X. Development and Experiment of a Novel Quadruped Robot with Electric Drive [Dissertation]. Shanghai: Shanghai University, 2016
|
[3] |
Hooks J, Ahn M S, Yu J, et al. ALPHRED: A multi-modal operations quadruped robot for package delivery applications. IEEE Robotics Autom Lett, 2020, 5(4): 5409 doi: 10.1109/LRA.2020.3007482
|
[4] |
Guizzo E, Ackerman E. $74, 500 will fetch you a spot: For the price of a luxury car, you can now buy a very smart, very capable, very yellow robot dog. IEEE Spectr, 2020, 57(8): 11 doi: 10.1109/MSPEC.2020.9150543
|
[5] |
Blickhan R. The spring-mass model for running and hopping. J Biomech, 1989, 22(11): 1217
|
[6] |
Ferris D P, Farley C T. Interaction of leg stiffness and surface stiffness during human hopping. J Appl Physiol, 1997, 82(1): 15 doi: 10.1152/jappl.1997.82.1.15
|
[7] |
Ferris D P, Louie M, Farley C T. Running in the real world: adjusting leg stiffness for different surfaces. Proc R Soc B:Biol Sci, 1998, 265(1400): 989 doi: 10.1098/rspb.1998.0388
|
[8] |
Galloway K C, Clark J E, Yim M, et al. Experimental investigations into the role of passive variable compliant legs for dynamic robotic locomotion // 2011 IEEE International Conference on Robotics and Automation. Shanghai, 2011: 1243
|
[9] |
Galloway K C, Clark J E, Koditschek D E. Variable stiffness legs for robust, efficient, and stable dynamic running. J Mech Robotics, 2013, 5(1): 011009 doi: 10.1115/1.4007843
|
[10] |
Koco E, Mutka A, Kovacic Z. New variable passive-compliant element design for quadruped adaptation to stiffness-varying terrain. Int J Adv Robotic Syst, 2016, 13(3): 90 doi: 10.5772/63893
|
[11] |
Christie M D, Sun S, Ning D H, et al. A highly stiffness-adjustable robot leg for enhancing locomotive performance. Mech Syst Signal Process, 2019, 126: 458 doi: 10.1016/j.ymssp.2019.02.043
|
[12] |
張小俊, 孫凌宇, 劉文義, 等. 可變剛度四足機器人對角小跑控制策略. 計算機集成制造系統, 2019, 25(2):439
Zhang X J, Sun L Y, Liu W Y, et al. Trotting control strategy of variable stiffness quadruped robot. Comput Integr Manuf Syst, 2019, 25(2): 439
|
[13] |
Park J, Park J H. Impedance control of quadruped robot and its impedance characteristic modulation for trotting on irregular terrain // 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, 2012: 175
|
[14] |
Xu K, Wang S K, Yue B K, et al. Adaptive impedance control with variable target stiffness for wheel-legged robot on complex unknown terrain. Mechatronics, 2020, 69: 102388 doi: 10.1016/j.mechatronics.2020.102388
|
[15] |
Bosworth W, Whitney J, Kim S, et al. Robot locomotion on hard and soft ground: Measuring stability and ground properties in situ // 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, 2016: 3582
|
[16] |
Bosworth W. Perception and Control of Robot Legged Locomotion over Variable Terrain [Dissertation]. Cambridge: Massachusetts Institute of Technology, 2016
|
[17] |
Miller B D, Cartes D, Clark J E. Leg stiffness adaptation for running on unknown terrains // 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, 2013: 5108
|
[18] |
Bednarek J, Bednarek M, Wellhausen L, et al. What am I touching? Learning to classify terrain via haptic sensing // 2019 International Conference on Robotics and Automation (ICRA). Montreal, 2019: 7187
|
[19] |
Vukobratovi? M, Borovac B. Zero-moment point—thirty five years of its life. Int J Human Robot, 2004, 1(1): 157 doi: 10.1142/S0219843604000083
|
[20] |
周坤, 李川, 李超, 等. 面向未知復雜地形的四足機器人運動規劃方法. 機械工程學報, 2020, 56(2):210 doi: 10.3901/JME.2020.02.210
Zhou K, Li C, Li C, et al. Motion planning method for quadruped robots walking on unknown rough terrain. J Mech Eng, 2020, 56(2): 210 doi: 10.3901/JME.2020.02.210
|
[21] |
Ngamkajornwiwat P, Homchanthanakul J, Teerakittikul P, et al. Bio-inspired adaptive locomotion control system for online adaptation of a walking robot on complex terrains. IEEE Access, 2020, 8: 91587 doi: 10.1109/ACCESS.2020.2992794
|
[22] |
韋中, 宋光明, 孫慧玉, 等. 脊柱型四足機器人運動學建模及對角小跑步態規劃. 東南大學學報(自然科學版), 2019, 49(6):1019 doi: 10.3969/j.issn.1001-0505.2019.06.001
Wei Z, Song G M, Sun H Y, et al. Kinematic modeling and trotting gait planning for the quadruped robot with an active spine. J Southeast Univ (Nat Sci Ed)
|
[23] |
韋中, 宋光明, 喬貴方, 等. 脊柱型四足機器人粗糙可變地形對角小跑運動控制. 東南大學學報(自然科學版), 2020, 50(2):385 doi: 10.3969/j.issn.1001-0505.2020.02.024
Wei Z, Song G M, Qiao G F, et al. Trotting locomotion control for quadruped robot with active spine over rough deformable terrain. J Southeast Univ (Nat Sci Ed)
|
[24] |
Machairas K, Papadopoulos E. An active compliance controller for quadruped trotting // 24th Mediterranean Conference on Control and Automation (MED). Athens, 2016: 743
|
[25] |
Ding C, Zhou L L, Li Y B, et al. A novel dynamic locomotion control method for quadruped robots running on rough terrains. IEEE Access, 2020, 8: 150435 doi: 10.1109/ACCESS.2020.3016312
|
[26] |
張國騰, 榮學文, 李貽斌, 等. 基于虛擬模型的四足機器人對角小跑步態控制方法. 機器人, 2016, 38(1):64
Zhang G T, Rong X W, Li Y B, et al. Control of the quadrupedal trotting based on virtual model. Robot, 2016, 38(1): 64
|
[27] |
謝惠祥, 尚建忠, 羅自榮, 等. 四足機器人對角小跑中機體翻轉分析與姿態控制. 機器人, 2014, 36(6):676
Xie H X, Shang J Z, Luo Z R, et al. Body rolling analysis and attitude control of a quadruped robot during trotting. Robot, 2014, 36(6): 676
|
[28] |
Raibert M H. Legged Robots That Balance. Cambridge: The MIT Press, 1986
|