Citation: | XIN Wei, WANG Yu-jiang, WEI Shi-cheng, WANG Bo, LIANG Yi, YUAN Yue, XU Bin-shi. Research progress of the preparation of high entropy alloy coatings by spraying[J]. Chinese Journal of Engineering, 2021, 43(2): 170-178. doi: 10.13374/j.issn2095-9389.2020.10.20.001 |
[1] |
Zuo T T, Gao M C, Ouyang L Z, et al. Tailoring magnetic behavior of CoFeMnNiX (X=Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater, 2017, 130: 10 doi: 10.1016/j.actamat.2017.03.013
|
[2] |
Li Z, Bai G H, Liu X G, et al. Tuning phase constitution and magnetic properties by composition in FeCoNiAlMn high-entropy alloys. J Alloys Compd, 2020, 845: 156204 doi: 10.1016/j.jallcom.2020.156204
|
[3] |
Huang S, Li W, Li X Q, et al. Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater Des, 2016, 103: 71 doi: 10.1016/j.matdes.2016.04.053
|
[4] |
Nagase T, Anada S, Rack P D, et al. MeV electron-irradiation-induced structural change in the bcc phase of Zr–Hf–Nb alloy with an approximately equiatomic ratio. Intermetallics, 2013, 38: 70 doi: 10.1016/j.intermet.2013.02.009
|
[5] |
Kim J, Lim J W, Kim J K, et al. Suppressed radiation-induced dynamic recrystallization in CrFeCoNiCu high-entropy alloy. Scripta Mater, 2021, 190: 158 doi: 10.1016/j.scriptamat.2020.08.045
|
[6] |
Guo H X, He C Y, Qiu X L, et al. A novel multilayer high temperature colored solar absorber coating based on high-entropy alloy MoNbHfZrTi: Optimized preparation and chromaticity investigation. Sol Energy Mater Sol Cells, 2020, 209: 110444 doi: 10.1016/j.solmat.2020.110444
|
[7] |
Vrtnik S, Ko?elj P, Meden A, et al. Superconductivity in thermally annealed Ta–Nb–Hf–Zr–Ti high-entropy alloys. J Alloys Compd, 2017, 695: 3530 doi: 10.1016/j.jallcom.2016.11.417
|
[8] |
Shen H H, Hu J T, Li P C, et al. Compositional dependence of hydrogenation performance of Ti?Zr?Hf?Mo?Nb high-entropy alloys for hydrogen/tritium storage. J Mater Sci Technol, 2020, 55: 116 doi: 10.1016/j.jmst.2019.08.060
|
[9] |
魏耀光, 郭剛, 李靜, 等. 難熔高熵合金在航空發動機上的應用. 航空材料學報, 2019, 39(5):82 doi: 10.11868/j.issn.1005-5053.2019.000023
Wei Y G, Guo G, Li J, et al. Application of refractory high entropy alloys on aero-engines. J Aeron Mater, 2019, 39(5): 82 doi: 10.11868/j.issn.1005-5053.2019.000023
|
[10] |
Waseem O A, Ryu H J. Combinatorial development of the low-density high-entropy alloy Al10Cr20Mo20Nb20Ti20Zr10 having gigapascal strength at 1000 ℃. J Alloys Compd, 2020, 845: 155700 doi: 10.1016/j.jallcom.2020.155700
|
[11] |
Nagase T, Iijima Y, Matsugaki A, et al. Design and fabrication of Ti?Zr?Hf?Cr?Mo and Ti?Zr?Hf?Co?Cr?Mo high-entropy alloys as metallic biomaterials. Mater Sci Eng C, 2020, 107: 110322 doi: 10.1016/j.msec.2019.110322
|
[12] |
Gurel S, Yagci M B, Bal B, et al. Corrosion behavior of novel titanium-based high entropy alloys designed for medical implants. Mater Chem Phys, 2020, 254: 123377 doi: 10.1016/j.matchemphys.2020.123377
|
[13] |
Li Y G, Li R, Peng Q. Enhanced surface bombardment resistance of the CoNiCrFeMn high entropy alloy under extreme irradiation flux. Nanotechnology, 2020, 31(2): 025703 doi: 10.1088/1361-6528/ab473f
|
[14] |
Xing Q W, Ma J, Wang C, et al. High-throughput screening solar-thermal conversion films in a pseudobinary (Cr, Fe, V)?(Ta, W) system. ACS Comb Sci, 2018, 20(11): 602 doi: 10.1021/acscombsci.8b00055
|
[15] |
Khan N A, Akhavan B, Zhou C F, et al. High entropy nitride (HEN) thin films of AlCoCrCu0.5FeNi deposited by reactive magnetron sputtering. Surf Coat Technol, 2020, 402: 126327 doi: 10.1016/j.surfcoat.2020.126327
|
[16] |
Wang J J, Kuang S F, Yu X, et al. Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering. Surf Coat Technol, 2020, 403: 126374 doi: 10.1016/j.surfcoat.2020.126374
|
[17] |
Medina L Z, Riekehr L, Jansson U. Phase formation in magnetron sputtered CrMnFeCoNi high entropy alloy. Surf Coat Technol, 2020, 403: 126323 doi: 10.1016/j.surfcoat.2020.126323
|
[18] |
Zeng Q F, Xu Y T. A comparative study on the tribocorrosion behaviors of AlFeCrNiMo high entropy alloy coatings and 304 stainless steel. Mater Today Commun, 2020, 24: 101261 doi: 10.1016/j.mtcomm.2020.101261
|
[19] |
Yin D Q, Liang G B, Fan S, et al. Ultrasonic cavitation erosion behavior of AlCoCrxCuFe high entropy alloy coatings synthesized by laser cladding. Materials, 2020, 13(18): 4067 doi: 10.3390/ma13184067
|
[20] |
Wen X, Cui X F, Jin G, et al. Design and characterization of FeCrCoAlMn0.5Mo0.1 high-entropy alloy coating by ultrasonic assisted laser cladding. J Alloys Compd, 2020, 835: 155449 doi: 10.1016/j.jallcom.2020.155449
|
[21] |
Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater, 2004, 6(1-2): 74
|
[22] |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567
|
[23] |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys. Intermetallics, 2010, 18(9): 1758 doi: 10.1016/j.intermet.2010.05.014
|
[24] |
Joshi S. Special Issue: advances in thermal spray technology. Materials, 2020, 13(16): 3521 doi: 10.3390/ma13163521
|
[25] |
Mohanty S, Maity T N, Mukhopadhyay S, et al. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater Sci Eng A, 2017, 679: 299 doi: 10.1016/j.msea.2016.09.062
|
[26] |
何春靜, 劉雄軍, 張盼, 等. 粉末冶金在高熵材料中的應用. 工程科學學報, 2019, 41(12):1501
He C J, Liu X J, Zhang P, et al. Applications of powder metallurgy technology in high-entropy materials. Chin J Eng, 2019, 41(12): 1501
|
[27] |
Ji W, Wang W M, Wang H, et al. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics, 2015, 56: 24 doi: 10.1016/j.intermet.2014.08.008
|
[28] |
L?bel M, Lindner T, Kohrt C, et al. Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying. IOP Conf Ser Mater Sci Eng, 2017, 181: 012015 doi: 10.1088/1757-899X/181/1/012015
|
[29] |
Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 2015, 60: 1 doi: 10.1016/j.intermet.2015.01.004
|
[30] |
Wang W R, Qi W, Xie L, et al. Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying. Materials, 2019, 12(5): 694 doi: 10.3390/ma12050694
|
[31] |
Hsu W L, Yang Y C, Chen C Y, et al. Thermal sprayed high-entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 coating with improved mechanical properties and oxidation resistance. Intermetallics, 2017, 89: 105 doi: 10.1016/j.intermet.2017.05.015
|
[32] |
Ang A S M, Berndt C C, Sesso M L, et al. Plasma-sprayed high entropy alloys: microstructure and properties of AlCoCrFeNi and MnCoCrFeNi. Metall Mater Trans A, 2015, 46(2): 791 doi: 10.1007/s11661-014-2644-z
|
[33] |
Anupam A, Kottada R S, Kashyap S, et al. Understanding the microstructural evolution of high entropy alloy coatings manufactured by atmospheric plasma spray processing. Appl Surf Sci, 2020, 505: 144117 doi: 10.1016/j.apsusc.2019.144117
|
[34] |
熊偉. 高熵合金涂層的APS制備及組織與性能研究[學位論文]. 鎮江: 江蘇科技大學, 2017
Xiong W. Preparation of High-Entropy Alloy Coatings by APS and Study on Their Microstructure and Properties [Dissertation]. Zhenjiang: Jiangsu University of Science and Technology, 2017
|
[35] |
Lin D Y, Zhang N N, He B, et al. Influence of laser re-melting and vacuum heat treatment on plasma-sprayed FeCoCrNiAl alloy coatings. J Iron Steel Res Int, 2017, 24(12): 1199 doi: 10.1016/S1006-706X(18)30018-9
|
[36] |
Wang C M, Yu J X, Zhang Y, et al. Phase evolution and solidification cracking sensibility in laser remelting treatment of the plasma-sprayed CrMnFeCoNi high entropy alloy coating. Mater Des, 2019, 182: 108040 doi: 10.1016/j.matdes.2019.108040
|
[37] |
Chen L J, Bobzin K, Zhou Z, et al. Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures. Surf Coat Technol, 2019, 358: 215 doi: 10.1016/j.surfcoat.2018.11.052
|
[38] |
L?bel M, Lindner T, Lampke T. High-temperature wear behaviour of AlCoCrFeNiTi0.5 coatings produced by HVOF. Surf Coat Technol, 2020, 403: 126379 doi: 10.1016/j.surfcoat.2020.126379
|
[39] |
Srivastava M, Jadhav M, Chethan, et al. Synthesis and properties of high velocity oxy-fuel sprayed FeCoCrNi2Al high entropy alloy coating. Surf Coat Technol, 2019, 378: 124950 doi: 10.1016/j.surfcoat.2019.124950
|
[40] |
Vallimanalan A, Babu S P K, Muthukumaran S, et al. Corrosion behaviour of thermally sprayed Mo added AlCoCrNi high entropy alloy coating. Mater Today Proc, 2020, 27: 2398 doi: 10.1016/j.matpr.2019.09.149
|
[41] |
郭偉, 梁秀兵, 陳永雄, 等. FeCrNiCoCu(B)高熵合金涂層的制備與表征. 中國表面工程, 2011, 24(2):70 doi: 10.3969/j.issn.1007-9289.2011.02.013
Guo W, Liang X B, Chen Y X, et al. Preparation and characterization of the FeCrNiCoCu(B) high-entropy alloy coatings. China Surf Eng, 2011, 24(2): 70 doi: 10.3969/j.issn.1007-9289.2011.02.013
|
[42] |
梁秀兵, 陳永雄, 張志彬, 等. 熱處理對FeCrNiCoCu高熵合金涂層的影響. 裝甲兵工程學院學報, 2013, 27(4):96
Liang X B, Chen Y X, Zhang Z B, et al. Effect of heat treatment on FeCrNiCoCu high-entropy alloy coating. J Acad Armored Force Eng, 2013, 27(4): 96
|
[43] |
Lehtonen J, Koivuluoto H, Ge Y L, et al. Cold gas spraying of a high-entropy CrFeNiMn equiatomic alloy. Coatings, 2020, 10(1): 53 doi: 10.3390/coatings10010053
|
[44] |
Anupam A, Kumar S, Chavan N M, et al. First report on cold-sprayed AlCoCrFeNi high-entropy alloy and its isothermal oxidation. J Mater Res, 2019, 34(5): 796 doi: 10.1557/jmr.2019.38
|
[45] |
Yin S, Li W Y, Song B, et al. Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying. J Mater Sci Technol, 2019, 35(6): 1003 doi: 10.1016/j.jmst.2018.12.015
|
[46] |
Karthikeyan J, Berndt C C, Tikkanen J, et al. Plasma spray synthesis of nanomaterial powders and deposits. Mater Sci Eng A, 1997, 238(2): 275 doi: 10.1016/S0921-5093(96)10568-2
|
[47] |
Darut G, Niederhauser A, Jaccoud B, et al. VLPPS: An emerging process to create well-defined components by additive manufacturing. J Therm Spray Technol, 2019, 28(1-2): 255 doi: 10.1007/s11666-018-0792-1
|
[48] |
Fauchais P, Montavon G, Bertrand G. From powders to thermally sprayed coatings. J Therm Spray Technol, 2010, 19(1-2): 56 doi: 10.1007/s11666-009-9435-x
|
[49] |
Montavon G, Sampath S, Berndt C C, et al. Effects of vacuum plasma spray processing parameters on splat morphology. J Therm Spray Technol, 1995, 4(1): 67 doi: 10.1007/BF02648530
|
[50] |
Berndt C C, Hasan F, Tietz U, et al. A review of hydroxyapatite coatings manufactured by thermal spray // Nissan B B. Advances in Calcium Phosphate Biomaterials. Berlin: Springer, 2014: 267
|
[51] |
Alagarsamy K, Fortier A, Komarasamy M, et al. Mechanical properties of high entropy alloy Al0.1CoCrFeNi for peripheral vascular stent application. Cardiovasc Eng Technol, 2016, 7(4): 448 doi: 10.1007/s13239-016-0286-6
|
[52] |
Popescu G, Ghiban B, Popescu C A, et al. New TiZrNbTaFe high entropy alloy used for medical applications. IOP Conf Ser Mater Sci Eng, 2018, 400(2): 022049
|
[53] |
Vladescu A, Titorencu I, Dekhtyar Y, et al. In vitro biocompatibility of Si alloyed multi-principal element carbide coatings. PLoS ONE, 2016, 11(8): e0161151 doi: 10.1371/journal.pone.0161151
|
[54] |
Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater, 2020, 5: 295 doi: 10.1038/s41578-019-0170-8
|
[55] |
Wang F, Yan X L, Wang T Y, et al. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics. Acta Mater, 2020, 195: 739 doi: 10.1016/j.actamat.2020.06.011
|
[56] |
Xie C X, Li W, Zheng D H, et al. Study of crystallization behavior and kinetics of magnetic FeCoCrNiZr high entropy amorphous alloy. J Non-Cryst Solids, 2019, 514: 20 doi: 10.1016/j.jnoncrysol.2019.03.039
|
[57] |
Satake M, Bitoh T. Synthesis of Fe-Co-Ni-(B, Si, C) ferromagnetic high entropy amorphous alloys and their thermal and magnetic properties. J Jpn Soc Powder Powder Metall, 2018, 65(7): 401 doi: 10.2497/jjspm.65.401
|
[58] |
Li X Q, Wei D X, Vitos L, et al. Micro-mechanical properties of new alternative binders for cemented carbides: CoCrFeNiWx high-entropy alloys. J Alloys Compd, 2020, 820: 153141 doi: 10.1016/j.jallcom.2019.153141
|
[59] |
Peng Y B, Zhang W, Li T C, et al. Effect of WC content on microstructures and mechanical properties of FeCoCrNi high-entropy alloy/WC composite coatings by plasma cladding. Surf Coat Technol, 2020, 385: 125326 doi: 10.1016/j.surfcoat.2019.125326
|
[60] |
Nyg?rd M M, S?awiński W A, Ek G, et al. Local order in high-entropy alloys and associated deuterides – a total scattering and Reverse Monte Carlo study. Acta Mater, 2020, 199: 504 doi: 10.1016/j.actamat.2020.08.045
|
[61] |
Kaufmann K, Vecchio K S. Searching for high entropy alloys: A machine learning approach. Acta Mater, 2020, 198: 178 doi: 10.1016/j.actamat.2020.07.065
|
[62] |
Gao T J, Zhao D, Zhang T W, et al. Strain-rate-sensitive mechanical response, twinning, and texture features of NiCoCrFe high-entropy alloy: Experiments, multi-level crystal plasticity and artificial neural networks modeling. J Alloys Compd, 2020, 845: 155911 doi: 10.1016/j.jallcom.2020.155911
|