<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 3
Jan.  2022
Turn off MathJax
Article Contents
YANG Sheng-qi, SUN Bo-wen, TIAN Wen-ling. Discrete element simulation of the mechanical properties of shale with different bedding inclinations under conventional triaxial compression[J]. Chinese Journal of Engineering, 2022, 44(3): 430-439. doi: 10.13374/j.issn2095-9389.2020.10.12.005
Citation: YANG Sheng-qi, SUN Bo-wen, TIAN Wen-ling. Discrete element simulation of the mechanical properties of shale with different bedding inclinations under conventional triaxial compression[J]. Chinese Journal of Engineering, 2022, 44(3): 430-439. doi: 10.13374/j.issn2095-9389.2020.10.12.005

Discrete element simulation of the mechanical properties of shale with different bedding inclinations under conventional triaxial compression

doi: 10.13374/j.issn2095-9389.2020.10.12.005
More Information
  • Corresponding author: E-mail: yangsqi@hotmail.com
  • Received Date: 2020-10-12
    Available Online: 2021-01-28
  • Publish Date: 2022-01-08
  • With the growth in energy demand, shale gas has attracted considerable attention as an unconventional clean and efficient energy source. In addition, the recoverable reserves of deep shale gas in China far exceed those with a depth less than 3500 m. Thus, deep shale gas is an important replacement field for shale gas production in China. Shale, as a shale gas reservoir, forms many weak surfaces in the deposition process and shows different degrees of anisotropy in the mechanical properties. Therefore, it is of great importance to use particle flow code (PFC) to explore anisotropy of shale from the perspective of micro-level for deep shale gas production in China. Based on the experimental results obtained from the shale specimens under conventional triaxial compression, PFC2D was used to simulate the triaxial mechanical properties of shale with different bedding inclinations. The effects of bedding inclination and confining pressure on the mechanical properties of shale specimens were analyzed. The following results are obtained. (1) With the increase of bedding inclination, the peak strength and cohesion of shale all display a "U"-type variation, but the trend of peak strength is different under different confining pressures and the internal friction angle varied nonlinearly with the bedding inclination increases. (2) The effects of bedding inclinations on the displacement direction and size of surrounding particles decrease with the increase of the angle between the bedding inclination and axial stress. (3) At constant bedding inclination, the number of microcracks at the final failure of the specimen increases with the increase of confining pressure. Under the same confining pressure, the number of microcracks in the final failure of the specimen first decreases and then increases with the increase in bedding inclination. (4) With increased confining pressure, the brittleness of shale with the same bedding angle decreases as a whole. Under low confining pressure, shale brittleness is larger at both ends and smaller in the middle with the increased bedding inclinations.

     

  • loading
  • [1]
    賈長貴, 陳軍海, 郭印同, 等. 層狀頁巖力學特性及其破壞模式研究. 巖土力學, 2013, 34(S2):57

    Jia C G, Chen J H, Guo Y T, et al. Research on mechanical behaviors and failure modes of layer shale. Rock Soil Mech, 2013, 34(S2): 57
    [2]
    衡帥, 楊春和, 張保平, 等. 頁巖各向異性特征的試驗研究. 巖土力學, 2015, 36(3):609

    Heng S, Yang C H, Zhang B P, et al. Experimental research on anisotropic properties of shale. Rock Soil Mech, 2015, 36(3): 609
    [3]
    姚光華, 陳喬, 劉洪, 等. 渝東南下志留統龍馬溪組層理性頁巖力學特性試驗研究. 巖石力學與工程學報, 2015, 34(S1):3313

    Yao G H, Chen Q, Liu H, et al. Experiment study on mechanical properties of bedding shale in lower Silurian Longmaxi shale southeast Chongqing. Chin J Rock Mech Eng, 2015, 34(S1): 3313
    [4]
    (陳天宇, 馮夏庭, 張希巍, 等. 黑色頁巖力學特性及各向異性特性試驗研究. 巖石力學與工程學報, 2014, 33(9):1772

    Chen T Y, Feng X T, Zhang X W, et al. Experimental study on mechanical and anisotropic properties of black shale. Chin J Rock Mech Eng, 2014, 33(9): 1772
    [5]
    熊健, 林海宇, 劉向君, 等. 高溫對富有機質頁巖巖石物理特性的影響. 石油實驗地質, 2019, 41(6):910 doi: 10.11781/sysydz201906910

    Xiong J, Lin H Y, Liu X J, et al. High temperature effects on rock physical properties of organic-rich shale. Petroleum Geol Exp, 2019, 41(6): 910 doi: 10.11781/sysydz201906910
    [6]
    Masri M, Sibai M, Shao J F, et al. Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale. Int J Rock Mech Min Sci, 2014, 70: 185 doi: 10.1016/j.ijrmms.2014.05.007
    [7]
    孟陸波, 李天斌, 徐進, 等. 高溫作用下圍壓對頁巖力學特性影響的試驗研究. 煤炭學報, 2012, 37(11):1829

    Meng L B, Li T B, Xu J, et al. Experimental study on influence of confining pressure on shale mechanical properties under high temperature condition. J China Coal Soc, 2012, 37(11): 1829
    [8]
    何柏, 謝凌志, 李鳳霞, 等. 龍馬溪頁巖各向異性變形破壞特征及其機理研究. 中國科學:物理學 力學 天文學, 2017, 47(11):107

    He B, Xie L Z, Li F X, et al. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi shale. Sci Sin (Phys Mech Astron), 2017, 47(11): 107
    [9]
    亓倩, 朱維耀. 復雜壓裂縫網頁巖氣儲層壓力傳播動邊界研究. 工程科學學報, 2019, 041(011):1387

    Qi Q, Zhu W Y. Moving boundary analysis of fractured shale gas reservoir. Chin J Eng, 2019, 041(011): 1387
    [10]
    王輝, 李勇, 曹樹剛, 等. 基于巴西劈裂實驗的層狀頁巖斷裂特征試驗研究. 采礦與安全工程學報, 2020, 37(3):604

    Wang H, Li Y, Cao S G, et al. Experimental study on fracture characteristics of layered shale under Brazilian splitting tests. J Min Saf Eng, 2020, 37(3): 604
    [11]
    楊志鵬, 何柏, 謝凌志, 等. 基于巴西劈裂試驗的頁巖強度與破壞模式研究. 巖土力學, 2015, 36(12):3447

    Yang Z P, He B, Xie L Z, et al. Strength and failure modes of shale based on Brazilian test. Rock Soil Mech, 2015, 36(12): 3447
    [12]
    侯鵬, 高峰, 楊玉貴, 等. 黑色頁巖巴西劈裂破壞的層理效應研究及能量分析. 巖土工程學報, 2016, 38(5):930 doi: 10.11779/CJGE201605020

    Hou P, Gao F, Yang Y G, et al. Effect of bedding orientation on failure of black shale under Brazilian tests and energy analysis. Chin J Geotech Eng, 2016, 38(5): 930 doi: 10.11779/CJGE201605020
    [13]
    Yang S Q, Yin P F, Ranjith P G. Experimental study on mechanical behavior and brittleness characteristics of Longmaxi formation shale in Changning, Sichuan Basin, China. Rock Mech Rock Eng, 2020, 53(5): 2461 doi: 10.1007/s00603-020-02057-8
    [14]
    刁海燕. 泥頁巖儲層巖石力學特性及脆性評價. 巖石學報, 2013, 29(9):3300

    Diao H Y. Rock mechanical properties and brittleness evaluation of shale reservoir. Acta Petrol Sin, 2013, 29(9): 3300
    [15]
    袁俊亮, 鄧金根, 張定宇, 等. 頁巖氣儲層可壓裂性評價技術. 石油學報, 2013, 34(3):523 doi: 10.7623/syxb201303015

    Yuan J L, Deng J G, Zhang D Y, et al. Fracability evaluation of shale-gas reservoirs. Acta Petrolei Sin, 2013, 34(3): 523 doi: 10.7623/syxb201303015
    [16]
    郭天魁, 張士誠, 潘林華. 頁巖儲層射孔水平井水力裂縫起裂數值模擬研究. 巖石力學與工程學報, 2015, 34(增刊1): 2721

    Guo T K, Zhang S C, Pan L H. Numerical simulation study of hydraulic fracture initiation for perforated horizontal well in shale play. Chin J Rock Mech Eng, 2015, 34(S1): 2721
    [17]
    卞康, 陳彥安, 劉建, 等. 不同吸水時間下頁巖卸荷破壞特征的顆粒離散元研究. 巖土力學, 2020, 41(增刊1): 355

    Bian K, Chen Y A, Liu J, et al. The unloading failure characteristics of shale under different water absorption time using the PFC numerical method. Rock Soil Mech, 2020, 41(S1): 355
    [18]
    梁正召, 唐春安, 李厚祥, 等. 單軸壓縮下橫觀各向同性巖石破裂過程的數值模擬. 巖土力學, 2005, 26(1):57 doi: 10.3969/j.issn.1000-7598.2005.01.012

    Liang Z Z, Tang C A, Li H X, et al. A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression. Rock Soil Mech, 2005, 26(1): 57 doi: 10.3969/j.issn.1000-7598.2005.01.012
    [19]
    楊志, 劉同成, 郝亮亮, 等. 均質度對層理頁巖破壞過程聲發射影響的數值模擬. 南昌大學學報(工科版), 2017, 39(2):140

    Yang Z, Liu T C, Hao L L, et al. Numerical simulation of influence of homogeneous degree on layer shale acoustic emission. J Nanchang Univ (Eng Technol), 2017, 39(2): 140
    [20]
    張社榮, 孫博, 王超, 等. 雙軸壓縮試驗下巖石裂紋擴展的離散元分析. 巖石力學與工程學報, 2013, 32(增刊2): 3083

    Zhang S R, Sun B, Wang C, et al. Discrete element analysis of crack propagation in rocks under biaxial compression. Chin J Rock Mech Eng, 2013, 32(Sup2): 3083
    [21]
    Yang S Q, Yin P F, Li B, et al. Behavior of transversely isotropic shale observed in triaxial tests and Brazilian disc tests. Int J Rock Mech Min Sci, 2020, 133: 104435 doi: 10.1016/j.ijrmms.2020.104435
    [22]
    Lee H, Jeon S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct, 2011, 48(6): 979 doi: 10.1016/j.ijsolstr.2010.12.001
    [23]
    田文嶺, 楊圣奇, 黃彥華. 不同圍壓下共面雙裂隙脆性砂巖裂紋演化特性顆粒流模擬研究. 采礦與安全工程學報, 2017, 34(6):1207

    Tian W L, Yang S Q, Huang Y H. PFC2D simulation on crack evolution behavior of brittle sandstone containing two coplanar fissures under different confining pressures. J Min Saf Eng, 2017, 34(6): 1207
    [24]
    黃彥華, 楊圣奇. 非共面雙裂隙紅砂巖宏細觀力學行為顆粒流模擬. 巖石力學與工程學報, 2014, 33(8):1644

    Huang Y H, Yang S Q. Particle flow simulation of macro- and meso-mechanical behavior of red sandstone containing two pre-existing non-coplanar fissures. Chin J Rock Mech Eng, 2014, 33(8): 1644
    [25]
    Zhang X P, Wong L N Y. Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression. Int J Fract, 2013, 180(1): 93 doi: 10.1007/s10704-012-9803-2
    [26]
    Jaeger J C. Shear failure of anistropic rocks. Geol Mag, 1960, 97(1): 65 doi: 10.1017/S0016756800061100
    [27]
    王洪建, 劉大安, 黃志全, 等. 層狀頁巖巖石力學特性及其脆性評價. 工程地質學報, 2017, 25(6):1414

    Wang H J, Liu D A, Huang Z Q, et al. Mechanical properties and brittleness evaluation of layered shale rock. J Eng Geol, 2017, 25(6): 1414
    [28]
    任巖, 曹宏, 姚逢昌, 等. 巖石脆性評價方法進展. 石油地球物理勘探, 2018, 53(4):875

    Ren Y, Cao H, Yao F C, et al. Review of rock brittleness evaluation methods. Oil Geophys Prospect, 2018, 53(4): 875
    [29]
    張軍, 艾池, 李玉偉, 等. 基于巖石破壞全過程能量演化的脆性評價指數. 巖石力學與工程學報, 2017, 36(6):1326

    Zhang J, Ai C, Li Y W, et al. Brittleness evaluation index based on energy variation in the whole process of rock failure. Chin J Rock Mech Eng, 2017, 36(6): 1326
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (1223) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频