Citation: | LI Ya-di, MI Guang-bao, LI Pei-jie, CAO Jing-xia, HUANG Xu. Predicting the mechanical properties and composition optimization of a burn-resistant titanium alloy for aero-engines[J]. Chinese Journal of Engineering, 2022, 44(6): 1036-1043. doi: 10.13374/j.issn2095-9389.2020.10.12.001 |
[1] |
梁賢燁, 弭光寶, 李培杰, 等. 鈦合金高溫摩擦著火理論研究. 物理學報, 2020, 69(21):343 doi: 10.7498/aps.69.20200304
Liang X Y, Mi G B, Li P J, et al. Theoretical study on ignition of titanium alloy under high temperature friction condition. Acta Phys Sin, 2020, 69(21): 343 doi: 10.7498/aps.69.20200304
|
[2] |
弭光寶, 黃旭, 曹京霞, 等. 摩擦點火Ti?V?Cr阻燃鈦合金燃燒產物的組織特征. 物理學報, 2016, 65(5):056103 doi: 10.7498/aps.65.056103
Mi G B, Huang X, Cao J X, et al. Microstructure characteristics of burning products of Ti?V?Cr fireproof titanium alloy by frictional ignition. Acta Phys Sin, 2016, 65(5): 056103 doi: 10.7498/aps.65.056103
|
[3] |
Zhao Y Q, Zhu K Y, Qu H L, et al. Microstructures of a burn resistant highly stabilized β-titanium alloy. Mater Sci Eng:A, 2000, 282(1-2): 153 doi: 10.1016/S0921-5093(99)00761-3
|
[4] |
Ouyang P X, Mi G B, Cao J X, et al. Microstructure characteristics after combustion and fireproof mechanism of TiAl-based alloys. Mater Today Commun, 2018, 16: 364 doi: 10.1016/j.mtcomm.2018.07.012
|
[5] |
熊家帥, 黃進峰, 解國良, 等. 電鍍Cr涂層對TC4鈦合金燃燒性能的影響. 工程科學學報, 2020, 42(8):1007
Xiong J S, Huang J F, Xie G L, et al. Effect of electroplating Cr coating on combustion characteristics of TC4 titanium alloy. Chin J Eng, 2020, 42(8): 1007
|
[6] |
梁賢燁, 弭光寶, 李培杰, 等. 航空發動機鈦火特性理論計算研究. 航空材料學報, 2021, 41(6):59
Liang X Y, Mi G B Li P J, et al. Theoretical calculation of characteristics on titanium fire in aero-engine. J Aeronaut Mater, 2021, 41(6): 59
|
[7] |
Mi G B, Yao K, Min X H. Effect of temperature on wear behavior in a Ti-V-Cr base fireproof titanium alloy. Int J Precis Eng Manuf, 2017, 18: 1553 doi: 10.1007/s12541-017-0184-3
|
[8] |
Hood R, Johnson C M, Soo S L, et al. High-speed ball nose end milling of burn-resistant titanium (BuRTi) alloy. Int J Comput Integr Manuf, 2014, 27(2): 139 doi: 10.1080/0951192X.2013.801563
|
[9] |
Li Y G, Blenkinsop P A, Loretto M H, et al. Effect of carbon and oxygen on microstructure and mechanical properties of Ti?25V?15Cr?2Al (wt%) alloys. Acta Mater, 1999, 47(10): 2889 doi: 10.1016/S1359-6454(99)00173-1
|
[10] |
Li Y G, Blenkinsop P A, Loretto M H, et al. Effect of aluminium on deformation structure of highly stabilised β-Ti?V?Cr alloys. Mater Sci Technol, 1999, 15(2): 151 doi: 10.1179/026708399101505680
|
[11] |
Sun F S, Lavernia E J. Creep behavior of nonburning Ti?35V?15Cr?xC alloys. J Mater Eng Perform, 2005, 14(6): 784 doi: 10.1361/105994905X75619
|
[12] |
辛社偉, 趙永慶, 曾衛東, 等. V元素對Ti?V?Cr系阻燃鈦合金熱強性的影響. 稀有金屬材料與工程, 2007, 36(11):2031 doi: 10.3321/j.issn:1002-185x.2007.11.036
Xin S W, Zhao Y Q, Zeng W D, et al. Effect of V on the thermal stability and creep of Ti?V?Cr burn-resistant titanium alloy. Rare Met Mater Eng, 2007, 36(11): 2031 doi: 10.3321/j.issn:1002-185x.2007.11.036
|
[13] |
弭光寶, 黃旭, 曹京霞, 等. Ti?V?Cr系阻燃鈦合金的抗點燃性能及其理論分析. 金屬學報, 2014, 50(5):575
Mi G B, Huang X, Cao J X, et al. Ignition resistance performance and its theoretical analysis of Ti?V?Cr type fireproof titanium alloys. Acta Metall Sin, 2014, 50(5): 575
|
[14] |
曹京霞, 黃旭, 弭光寶, 等. Ti?V?Cr系阻燃鈦合金應用研究進展. 航空材料學報, 2014, 34(4):92 doi: 10.11868/j.issn.1005-5053.2014.4.009
Cao J X, Huang X, Mi G B, et al. Research progress on application technique of Ti?V?Cr burn resistant titanium alloys. J Aeronaut Mater, 2014, 34(4): 92 doi: 10.11868/j.issn.1005-5053.2014.4.009
|
[15] |
賴運金, 張平祥, 辛社偉, 等. 國內阻燃鈦合金工程化技術研究進展. 稀有金屬材料與工程, 2015, 44(8):2067
Lai Y J, Zhang P X, Xin S W, et al. Research progress on engineered technology of burn-resistant titanium alloys in China. Rare Met Mater Eng, 2015, 44(8): 2067
|
[16] |
孫歡迎, 趙軍, 劉翊安, 等. C含量對Ti?V?Cr系阻燃鈦合金微觀組織和力學性能的影響. 材料研究學報, 2019, 33(7):537 doi: 10.11901/1005.3093.2019.090
Sun H Y, Zhao J, Liu Y A, et al. Effect of C addition on microstructure and mechanical properties of Ti?V?Cr burn resistant titanium alloys. Chin J Mater Res, 2019, 33(7): 537 doi: 10.11901/1005.3093.2019.090
|
[17] |
Zhou T, Song Z, Sundmacher K. Big data creates new opportunities for materials research: A review on methods and applications of machine learning for materials design. Engineering, 2019, 5(6): 1017 doi: 10.1016/j.eng.2019.02.011
|
[18] |
汪洪, 項曉東, 張瀾庭. 數據+人工智能是材料基因工程的核心. 科技導報, 2018, 36(14):15
Wang H, Xiang X D, Zhang L T. Data+AI: The core of materials genomic engineering. Sci Technol Rev, 2018, 36(14): 15
|
[19] |
吳煒, 孫強. 應用機器學習加速新材料的研發. 中國科學:物理學 力學 天文學, 2018, 48(10):58
Wu W, Sun Q. Applying machine learning to accelerate new materials development. Sci Sin Phys Mech Astron, 2018, 48(10): 58
|
[20] |
Malinov S, Sha W, McKeown J J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comput Mater Sci, 2001, 21(3): 375 doi: 10.1016/S0927-0256(01)00160-4
|
[21] |
Noori Banu P S, Devaki Rani S. Knowledge-based artificial neural network model to predict the properties of alpha+ beta titanium alloys. J Mech Sci Technol, 2016, 30(8): 3625 doi: 10.1007/s12206-016-0723-3
|
[22] |
孫麗娜. 定向凝固鈦合金熱處理工藝的神經網絡優化. 兵器材料科學與工程, 2017, 40(4):30
Sun L N. Heat treatment process optimization of directional solidification titanium alloys based on neural network. Ordnance Mater Sci Eng, 2017, 40(4): 30
|
[23] |
Noori Banu P S, Devaki Rani S. Artificial neural network based optimization of prerequisite properties for the design of biocompatible titanium alloys. Comput Mater Sci, 2018, 149: 259 doi: 10.1016/j.commatsci.2018.03.039
|
[24] |
許佳佳, 王飛. Ti?Al?V系鈦合金抗拉強度預測模型的建立及驗證. 熱加工工藝, 2018, 47(10):72
Xu J J, Wang F. Tensile strength forecasting model foundation and checking of Ti?Al?V series Ti alloys. Hot Work Technol, 2018, 47(10): 72
|
[25] |
張學敏, 惠玉強, 李咪, 等. 基于BP神經網絡的WSTi3515S阻燃鈦合金超塑性變形行為預測. 特種鑄造及有色合金, 2019, 39(6):668
Zhang X M, Xi Y Q, Li M, et al. Prediction of superplastic deformation behavior of WSTi3515S burn-resistant titanium alloy based on BP artificial neural network. Special Cast Nonferrous Alloys, 2019, 39(6): 668
|
[26] |
周曉虎, 樓美琪, 張學敏, 等. 基于神經元網絡的熱暴露對TC4鈦合金拉伸性能影響預測. 熱加工工藝, 2019, 48(14):128
Zhou X H, Lou M Q, Zhang X M, et al. Prediction of effect of thermal exposure on tensile properties of TC4 titanium alloy based on neural network. Hot Work Technol, 2019, 48(14): 128
|
[27] |
Anand P, Rastogi R, Chandra S. A class of new support vector regression models. Appl Soft Comput, 2020, 94: 106446 doi: 10.1016/j.asoc.2020.106446
|
[28] |
孫歡迎, 趙軍, 劉翊安, 等. 一種新型低成本阻燃鈦合金的微觀組織與力學性能. 稀有金屬材料與工程, 2019, 48(6):1892
Sun H Y, Zhao J, Liu Y A, et al. Microstructure and mechanical properties of a new type burn resistant titanium alloy with lower cost. Rare Met Mater Eng, 2019, 48(6): 1892
|