<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
YUAN Bao-hui, LIU Jian-hua, ZHOU Hai-long, HUANG Ji-hong, ZHANG Shuo, SHEN Zhi-peng. Refining effect of IF steel produced by RH forced and natural decarburization process[J]. Chinese Journal of Engineering, 2021, 43(8): 1107-1115. doi: 10.13374/j.issn2095-9389.2020.10.10.002
Citation: YUAN Bao-hui, LIU Jian-hua, ZHOU Hai-long, HUANG Ji-hong, ZHANG Shuo, SHEN Zhi-peng. Refining effect of IF steel produced by RH forced and natural decarburization process[J]. Chinese Journal of Engineering, 2021, 43(8): 1107-1115. doi: 10.13374/j.issn2095-9389.2020.10.10.002

Refining effect of IF steel produced by RH forced and natural decarburization process

doi: 10.13374/j.issn2095-9389.2020.10.10.002
More Information
  • Owing to insufficient converter heat, IF steel is produced via the BOF—LF—RH—CC process in the Xichang Steel & Vanadium Co.LTD of Pangang Group, Xichang, China. To explore the refining effect of IF steel produced via the RH forced and natural decarburization process, this work employed standard analysis methods such as production data statistics, total oxygen and nitrogen analysis, automatic scanning electron microscopy, scanning electron microscopy, and energy spectroscopy. The effects of different decarburization processes on the ladle slag oxidability and cleanliness of steel were investigated in detail. Compared with the natural decarburization process heats, results show that the forced decarburization process heats exhibit (1) lower average [O] content in molten steel after BOF and before RH, (2) a similar level of the [O] content in molten steel after decarburization with that of the natural decarburization process, and (3) 1.3% lower average T.Fe mass fraction in the ladle slag after RH treatment. To ensure the RH decarburization effect, the final carbon content increased and molten steel oxygen content reduced in the converter to the maximum extent. The forced oxygen blowing decarburization process was then used to compensate for the molten steel oxygen content during RH refining by increasing oxygen blowing properly, which can significantly decrease the ladle slag oxidability of IF steel. Both the natural decarburization and forced decarburization processes are ideal for controlling the T.O content of a hot–rolled sheet. Compared with the natural decarburization process, the forced decarburization process can effectively reduce the [N] content of IF steel, which is related to a more violent carbon–oxygen reaction in a vacuum chamber, resulting in a high volume of CO bubbles and a large gas–liquid reaction area. The decarburization process has no obvious influence on the type, size, and number of inclusions in the hot–rolled sheet of IF steel that mainly consist of Al2O3, Al2O3–TiOx, and other inclusions. The average sizes of the above three 4.5, 4.4, and 6.5 μm, respectively, according to the equivalent circle diameter of inclusions. In addition, more than 75% of inclusions are within 8 μm. During the RH refining process, reducing the [O] content in molten steel after RH decarburization to the maximum extent is beneficial to improve the cleanliness of molten steel.

     

  • loading
  • [1]
    王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1

    Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1
    [2]
    孫群, 林洋, 李偉東. RH精煉脫碳與夾雜物控制. 北京科技大學學報, 2011(S1):142

    Sun Q, Lin Y, Li W D. Decarburization treatment and inclusion control during RH refining. J Univ Sci Technol Beijing, 2011(S1): 142
    [3]
    岳峰, 崔衡, 李朋歡, 等. RH冶煉超低碳鋼的最優工藝研究. 北京科技大學學報, 2009(S1):53

    Yue F, Cui H, Li P H, et al. Study on the optimum process of refining ULC steel by RH degasser. J Univ Sci Technol Beijing, 2009(S1): 53
    [4]
    馬煥珣, 王新華, 黃福祥, 等. 脫氧工藝對低碳鋁鎮靜鋼潔凈度的影響. 鋼鐵, 2016, 51(1):19

    Ma H X, Wang X H, Huang F X, et al. Effect of deoxidation technology on cleanliness of low carbon aluminum killed steel. Iron Steel, 2016, 51(1): 19
    [5]
    苑鵬, 李海波, 羅衍昭, 等. 超低碳鋼頂渣氧化性對鋼液潔凈度的影響. 工程科學學報, 2016, 38(12):1702

    Yuan P, Li H B, Luo Y Z, et al. Influence of ladle slag oxidability on the cleanliness of ultra low carbon steel. Chin J Eng, 2016, 38(12): 1702
    [6]
    舒宏富, 劉瀏, 劉學華. 鋼包頂渣改質對IF鋼夾雜物的影響. 煉鋼, 2016, 32(3):55

    Shu H F, Liu L, Liu X H. Influence of slag denaturalization on inclusions in IF steel. Steelmaking, 2016, 32(3): 55
    [7]
    彭著剛, 齊江華, 楊成威. 頂渣改質工藝對IF鋼夾雜物的影響. 工程科學學報, 2018(S1):174

    Peng Z G, Qi J H, Yang C W. Influence of slag denaturalization on inclusions in IF steel. Chin J Eng, 2018(S1): 174
    [8]
    王敏, 包燕平, 崔衡, 等. RH純循環對Ti-IF鋼潔凈度的影響. 北京科技大學學報, 2011, 33(12):1448

    Wang M, Bao Y P, Cui H, et al. Effect of RH pure circulation on the cleanness of titanium stabilized interstitial-free(Ti-IF) steel. J Univ Sci Technol Beijing, 2011, 33(12): 1448
    [9]
    崔衡, 陳斌, 王敏, 等. RH精煉過程中IF鋼潔凈度控制. 北京科技大學學報, 2011(S1):147

    Cui H, Chen B, Wang M, et al. Cleanliness control of IF steel during the RH refining process. J Univ Sci Technol Beijing, 2011(S1): 147
    [10]
    李怡宏, 包燕平, 申小維, 等. 300 t鋼包內DC06鋼的夾雜物控制研究. 煉鋼, 2014, 30(2):38

    Li Y H, Bao Y P, Shen X W, et al. Inclusions control study of DC06 steel in 300 t ladle. Steelmaking, 2014, 30(2): 38
    [11]
    崔衡, 田恩華, 陳斌, 等. RH真空精煉后IF鋼鎮靜工藝的潔凈度研究. 工程科學學報, 2014(S1):32

    Cui H, Tian E H, Chen B, et al. Cleanliness study of IF steel by holding in ladles after RH vacuum process. Chin J Eng, 2014(S1): 32
    [12]
    崔愛民, 王建偉, 劉柏松, 等. RH精煉自然脫碳和TOP強制脫碳效果的對比研究. 首鋼科技, 2010(4):24

    Cui A M, Wang J W, Liu B S, et al. The comparative study on the natural decarburization effect by RH and the forced decarburization effect by RH-TOP. Shou Gang Sci Technol, 2010(4): 24
    [13]
    李朋歡, 包燕平, 岳峰, 等. RH脫碳過程中極低氧鋼水的碳氧反應機理. 北京科技大學學報, 2011, 33(7):823

    Li P H, Bao Y P, Yue F, et al. Mechanism of carbon and oxygen reaction in RH decarburization of ultra low oxygen steel. J Univ Sci Technol Beijing, 2011, 33(7): 823
    [14]
    劉柏松, 李本海, 朱國森, 等. 常規RH和RH-TOP工藝精煉IF鋼試驗研究. 鋼鐵, 2010, 45(8):33

    Liu B S, Li B H, Zhu G S, et al. Experimental investigation on conventional RH and RH-TOP refining process for IF steel production. Iron Steel, 2010, 45(8): 33
    [15]
    李大明, 張文輝, 林立平, 等. RH頂吹氧技術在武鋼第二煉鋼廠的應用. 煉鋼, 2007, 23(6):5 doi: 10.3969/j.issn.1002-1043.2007.06.002

    Li D M, Zhang W H, Lin L P, et al. Application of RH oxygen top-blowing technology in No.2 Steel-making Plant, WISCO. Steelmaking, 2007, 23(6): 5 doi: 10.3969/j.issn.1002-1043.2007.06.002
    [16]
    袁保輝, 劉建華, 周海龍, 等. 高海拔RH精煉裝置真空脫碳工藝優化研究. 煉鋼, 2020, 36(4):31

    Yuan B H, Liu J H, Zhou H L, et al. The vacuum decarburization process optimization study of high altitude RH refining equipment. Steelmaking, 2020, 36(4): 31
    [17]
    劉猛, 白峰青, 陳少帥, 等. 水源判別標準集在礦井防治水中的應用. 礦業工程研究, 2014, 29(3):30

    Liu M, Bai F Q, Chen S S, et al. Application of water irrush source standard set in mine water prevention. Miner Eng Res, 2014, 29(3): 30
    [18]
    徐敏, 劉中財, 嚴曉, 等. 容量增量內阻一致性在線檢測方法. 儲能科學與技術, 2019, 8(6):1197

    Xu M, Liu Z C, Yan X, et al. Online detection method for incremental capacity internal resistance consistency. Energy Storage Sci Technol, 2019, 8(6): 1197
    [19]
    Hong J C, Wang Z P, Liu P. Big-data-based thermal runaway prognosis of battery systems for electric vehicles. Energies, 2017, 10(7): 919 doi: 10.3390/en10070919
    [20]
    段富春, 吳華章. 薄板坯連鑄超低碳鋼生產實踐. 工業加熱, 2007, 36(6):73 doi: 10.3969/j.issn.1002-1639.2007.06.027

    Duan F C, Wu H Z. The production practice of ultra-low-carbon steel in thin slab continuous casting. Ind Heat, 2007, 36(6): 73 doi: 10.3969/j.issn.1002-1639.2007.06.027
    [21]
    宋滿堂, 李明光, 于華財. 超低碳鋼薄板坯連鑄鋼水精煉工藝的研究. 煉鋼, 2009, 25(3):8

    Song M T, Li M G, Yu H C. Research on refining process of ultra-low-carbon steel for thin slab casting. Steelmaking, 2009, 25(3): 8
    [22]
    沈昶, 宋超, 舒宏富, 等. CSP批量生產超低碳鋼的RH-LF雙聯工藝研究. 鋼鐵, 2008, 43(5):26

    Shen C, Song C, Shu H F, et al. Research of ULC steel production route combining RH-LF refining and CSP line. Iron Steel, 2008, 43(5): 26
    [23]
    梁英教, 車蔭昌. 無機物熱力學數據手冊. 沈陽: 東北大學出版社, 1993

    Liang Y J, Che Y C. Handle of Inorganic Thermody Namic Data. Shenyang: Northeast University Press, 1993
    [24]
    成國光, 趙沛, 徐學祿, 等. 真空下鋼液脫氮工藝研究. 鋼鐵, 1999, 34(1):16 doi: 10.3321/j.issn:0449-749X.1999.01.005

    Cheng G G, Zhao P, Xu X L, et al. Process of vacuum denitrogenation of steel. Iron Steel, 1999, 34(1): 16 doi: 10.3321/j.issn:0449-749X.1999.01.005
    [25]
    曹盛. 超低氮鋼轉爐終點氮含量控制. 河北冶金, 2015(10):14

    Cao S. Control of end nitrogen content in smelting of ultra-low nitrogen steel with converter. Hebei Metall, 2015(10): 14
    [26]
    Kitamura T, Miyamoto K, Tsujino R, et al. Mathematical model for nitrogen desorption and decarburization reaction in vacuum degasser. ISIJ Int, 1996, 36(4): 395 doi: 10.2355/isijinternational.36.395
    [27]
    Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606
    [28]
    唐復平, 常桂華, 栗紅, 等. 超低碳鋼鋼中夾雜物的研究. 鋼鐵, 2007, 42(1):20

    Tang F P, Chang G H, Li H, et al. Inclusions in ultra-low carbon steel. Iron Steel, 2007, 42(1): 20
    [29]
    Dekkers R, Blanpain B, Wollants P, et al. A morphological comparison between inclusions in aluminium killed steels and deposits in submerged entry nozzle. Steel Res Int, 2003, 74(6): 351 doi: 10.1002/srin.200300197
    [30]
    王敏, 包燕平, 楊荃. 鈦合金化過程對鋼液潔凈度的影響. 北京科技大學學報, 2013, 35(6):725

    Wang M, Bao Y P, Yang Q. Effect of Ferro-titanium alloying process on steel cleanness. J Univ Sci Technol Beijing, 2013, 35(6): 725
    [31]
    潘明, 于會香, 季晨曦, 等. RH精煉過程中吹氧量對IF鋼潔凈度的影響. 工程科學學報, 2020, 42(7):846

    Pan M, Yu H X, Ji C X, et al. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel. Chin J Eng, 2020, 42(7): 846
    [32]
    高帥, 王敏, 郭建龍, 等. IF鋼鑄坯厚度方向夾雜物分布及潔凈度評估. 工程科學學報, 2020, 42(2):194

    Gao S, Wang M, Guo J L, et al. Evaluation of cleanliness and distribution of inclusions in the thickness direction of interstitial free(IF) steel slabs. Chin J Eng, 2020, 42(2): 194
    [33]
    Stone R P, Jr. Figas R M, Branion R V. Productivity improvements in steelmaking via sensor-based steelmaking process control. Iron Steel Technol, 2006, 3(1): 31
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (1223) PDF downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频