<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
WANG Yao, YAN Xiao-ying, MAN Cheng, ZHANG Hong-wei, DONG Chao-fang, WANG Xin. Microstructure and corrosion behavior of SLM–Ti6Al4V with different fabrication angles in F?-containing solutions[J]. Chinese Journal of Engineering, 2021, 43(5): 676-683. doi: 10.13374/j.issn2095-9389.2020.09.29.001
Citation: WANG Yao, YAN Xiao-ying, MAN Cheng, ZHANG Hong-wei, DONG Chao-fang, WANG Xin. Microstructure and corrosion behavior of SLM–Ti6Al4V with different fabrication angles in F?-containing solutions[J]. Chinese Journal of Engineering, 2021, 43(5): 676-683. doi: 10.13374/j.issn2095-9389.2020.09.29.001

Microstructure and corrosion behavior of SLM–Ti6Al4V with different fabrication angles in F?-containing solutions

doi: 10.13374/j.issn2095-9389.2020.09.29.001
More Information
  • Corresponding author: E-mail: mancheng@ouc.edu.cn
  • Received Date: 2020-09-29
  • Publish Date: 2021-05-25
  • Selective laser fusion (SLM) is an emerging 3D printing technology that can greatly shorten the processing cycle and reduce the production cost of medical implants, thus offering broad prospects for application in the biomedical field. In addition, its excellent corrosion resistance is a crucial characteristic for its application as a biomedical material. However, the corrosion behavior of SLM–TI6AL4V, especially its corrosion resistance, has not been a focus of extensive study to date. In this study, the microstructures and corrosion behavior of SLM–Ti6Al4V, which was produced via selective laser melting with fabrication angles of 30°, 45°, and 60°, in NaF-containing solutions were investigated using metalloscopy, scanning electron microscope, electrochemical measurement, and immersion test. According to microstructural analysis, SLM–Ti6Al4V is characterized by prior β grains with needle α' phases; the prior β grains for the sample with the fabrication angle of 45° are most like equiaxed, and the α' phase are the smallest. In addition, the sample with the fabrication angle of 45° has the smallest lattice distortion compared to the others. The electrochemical measurements reveal that with increasing NaF concentration, the corrosion resistance of all three samples deteriorates, and the critical fluoride concentration of the samples with fabrication angles of 30°, 45°, and 60° are in the range of 0.0005–0.00075 mol·L?1, 0.00075–0.001 mol·L?1, and 0.0005–0.00075 mol·L?1, respectively. From the results of the immersion test, in the solution with NaF concentrations less than the critical value, the surfaces of the three samples remain nearly intact, while in the solutions with more added NaF, active dissolution takes place on the sample surface. Comparing the results of the electrochemical measurements and the immersion test, the sample with the fabrication angle of 45° exhibits superior corrosion resistance.

     

  • loading
  • [1]
    李俊峰, 魏正英, 盧秉恒. 鈦及鈦合金激光選區熔化技術的研究進展. 激光與光電子學進展, 2018, 55(1):21

    Li J F, Wei Z Y, Lu B H. Research progress on technology of selective laser melting of titanium and titanium alloys. Laser Optoelectron Prog, 2018, 55(1): 21
    [2]
    葛亞楠, 武美萍, 冒浴沂, 等. 激光選區熔化掃描策略對鈦合金成形精度的影響. 激光與光電子學進展, 2018, 55(9):262

    Ge Y N, Wu M P, Mao Y Y, et al. Effect of scanning strategy on forming precision of titanium alloy by selective laser melting. Laser Optoelectron Prog, 2018, 55(9): 262
    [3]
    張慧. 選區激光熔化TC4 合金的凝固組織演化規律研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2017

    Zhang H. Research on the Solidification Microstructure Evolution of TC4 Alloy Fabricated by Selective Laser Melting [Dissertation]. Harbin: Harbin Institute of Technology, 2017
    [4]
    Yadroitsev I, Smurov I. Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape. Phys Procedia, 2010, 5: 551 doi: 10.1016/j.phpro.2010.08.083
    [5]
    Zhang L C, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater, 2016, 18(4): 463 doi: 10.1002/adem.201500419
    [6]
    Shi Q M, Gu D D, Xia M J, et al. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt Laser Technol, 2016, 84: 9 doi: 10.1016/j.optlastec.2016.04.009
    [7]
    Yadroitsev I, Krakhmalev P, Yadroitsava I. Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution. J Alloys Compd, 2014, 583: 404 doi: 10.1016/j.jallcom.2013.08.183
    [8]
    謝印開. 激光選區熔化Ti–6Al–4V 溫度場與流場的數值模擬[學位論文]. 北京: 北京工業大學, 2018

    Xie Y K. Numerical Investigation on Temperature Field and Flow Field During Selective Laser Melting of Ti−6Al−4V [Dissertation]. Beijing: Beijing University of Technology, 2018
    [9]
    Dai N W, Zhang L C, Zhang J X, et al. Distinction in corrosion resistance of selective laser melted Ti?6Al?4V alloy on different planes. Corros Sci, 2016, 111: 703 doi: 10.1016/j.corsci.2016.06.009
    [10]
    Dai N W, Zhang L C, Zhang J X, et al. Corrosion behavior of selective laser melted Ti?6Al?4V alloy in NaCl solution. Corros Sci, 2016, 102: 484 doi: 10.1016/j.corsci.2015.10.041
    [11]
    Chen L Y, Huang J C, Lin C H, et al. Anisotropic response of Ti?6Al?4V alloy fabricated by 3D printing selective laser melting. Mater Sci Eng A, 2017, 682: 389 doi: 10.1016/j.msea.2016.11.061
    [12]
    Simonelli M. Microstructure Evolution and Mechanical Properties of Selective Laser Melted Ti−6Al−4V [Dissertation]. Leicestershire: Loughborough University, 2014
    [13]
    Wang Z B, Hu H X, Zheng Y G, et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid. Corros Sci, 2016, 103: 50 doi: 10.1016/j.corsci.2015.11.003
    [14]
    曹楚南. 腐蝕電化學原理. 3版. 北京: 化學工業出版社, 2008

    Cao C N. Principles of Electrochemistry of Corrosion. 3rd Ed. Beijing: Chemical Industry Press, 2008
    [15]
    Mansfeld F. Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corros Sci, 2005, 47(12): 3178 doi: 10.1016/j.corsci.2005.04.012
    [16]
    Man C, Dong C F, Liu T T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Appl Surf Sci, 2019, 467-468: 193 doi: 10.1016/j.apsusc.2018.10.150
    [17]
    Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid. Electrochim Acta, 2014, 135: 526
    [18]
    Arrabal R, Matykina E, Viejo F, et al. Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corros Sci, 2008, 50(6): 1744 doi: 10.1016/j.corsci.2008.03.002
    [19]
    Wang B L, Zheng Y F, Zhao L C. Effects of Hf content and immersion time on electrochemical behavior of biomedical Ti-22Nb-xHf alloys in 0.9% NaCl solution. Mater Corros, 2009, 60(5): 330
    [20]
    Cui Z Y, Wang L W, Zhong M Y, et al. Electrochemical behavior and surface characteristics of pure titanium during corrosion in simulated desulfurized flue gas condensates. J Electrochem Soc, 2018, 165(9): C542 doi: 10.1149/2.1321809jes
    [21]
    Zhang H W, Man C, Wang L W, et al. Different corrosion behaviors between α and β phases of Ti6Al4V in fluoride-containing solutions: influence of alloying element Al. Corros Sci, 2020, 169: 108605 doi: 10.1016/j.corsci.2020.108605
    [22]
    Abbas G, Liu Z, Skeldon P. Corrosion behaviour of laser-melted magnesium alloys. Appl Surf Sci, 2005, 247(1-4): 347 doi: 10.1016/j.apsusc.2005.01.169
    [23]
    Stancheva M, Bojinov M. Influence of fluoride content on the barrier layer formation and titanium dissolution in ethylene glycol–water electrolytes. Electrochim Acta, 2012, 78: 65 doi: 10.1016/j.electacta.2012.05.093
    [24]
    Nakagawa M, Matsuya S, Shiraishi T, et al. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. J Dent Res, 1999, 78(9): 1568 doi: 10.1177/00220345990780091201
    [25]
    Guo P F, Lin X, Li J Q, et al. Electrochemical behavior of Inconel 718 fabricated by laser solid forming on different sections. Corros Sci, 2018, 132: 79 doi: 10.1016/j.corsci.2017.12.021
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)

    Article views (935) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频