<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
WANG Zi-xin, ZHANG Yong. Microstructure and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films[J]. Chinese Journal of Engineering, 2021, 43(5): 684-692. doi: 10.13374/j.issn2095-9389.2020.09.28.004
Citation: WANG Zi-xin, ZHANG Yong. Microstructure and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films[J]. Chinese Journal of Engineering, 2021, 43(5): 684-692. doi: 10.13374/j.issn2095-9389.2020.09.28.004

Microstructure and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films

doi: 10.13374/j.issn2095-9389.2020.09.28.004
More Information
  • Corresponding author: E-mail: drzhangy@ustb.edu.cn
  • Received Date: 2020-09-28
  • Publish Date: 2021-05-25
  • Recently, research on high-entropy alloys has developed rapidly. While studying high-entropy alloys in bulk, scholars have also conducted in-depth research on high-entropy alloy films, especially high-entropy alloy nitride films. Compared with traditional binary and ternary nitride films, high-entropy alloy nitride films have a simpler and denser structure and better performance, and therefore have great prospects for application in many fields. Research on high-entropy alloy nitride films is still relatively scarce, and the influencing factors of phase structure transformation and mechanical properties need to be further explored. Therefore, it will be an important research direction in the future. Based on a single-target Radio Frequency (RF) magnetron sputtering technique, two series of FeCrVTa0.4W0.4 high-entropy alloy nitride films were fabricated on monocrystalline silicon substrates. These are FeCrVTa0.4W0.4 nitride composition gradient multilayer films and (FeCrVTa0.4W0.4)Nx single-layer films, in which multilayer films are used for solar spectral selective absorption films. Through scanning electron microscope (SEM), X-ray diffractometer (XRD), nanomechanical probe, atomic force microscopy, UV–visible spectrophotometry, contact angle measuring instrument, and four-probe tester, the microstructure, and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films were analyzed. The results show that the film is amorphous when nitrogen is not introduced. When nitrogen content increases, nitride films are face-center-cubic solid solution in structure. When the surface nitrogen flow rate is 15 sccm, the FeCrVTa0.4W0.4 nitride multilayer film and the single-layer film have the best mechanical properties. Among them, the hardness of the multilayer film is 22.05 GPa and the modulus is 287.4 GPa; the hardness of the single-layer film is 22.8 GPa, and the modulus is 280.7 GPa. As the nitrogen content on the surface continues to increase, the mechanical properties decrease. FeCrVTa0.4W0.4 nitride composition gradient multilayer films have solar spectrum selective absorptivity in the wavelength range of 300–800 nm and have better hydrophobicity when the number of nitride films layer is small. With increasing nitrogen content, the block resistance of (FeCrVTa0.4W0.4)Nx single-layer film increases.

     

  • loading
  • [1]
    Feng X B, Zhang J Y, Wang Y Q, et al. Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films. Int J Plast, 2017, 95: 264 doi: 10.1016/j.ijplas.2017.04.013
    [2]
    Sohn S, Liu Y H, Liu J B, et al. Noble metal high entropy alloys. Scripta Mater, 2017, 126: 29 doi: 10.1016/j.scriptamat.2016.08.017
    [3]
    Liu S, Gao M C, Liaw P K, et al. Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys. J Alloys Compd, 2015, 619: 610 doi: 10.1016/j.jallcom.2014.09.073
    [4]
    Takeuchi A, Amiya K, Wada T, et al. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM, 2014, 66(10): 1984 doi: 10.1007/s11837-014-1085-x
    [5]
    Li D Y, Li C X, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater, 2017, 123: 285 doi: 10.1016/j.actamat.2016.10.038
    [6]
    Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics, 2016, 70: 24 doi: 10.1016/j.intermet.2015.11.002
    [7]
    Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345(6201): 1153 doi: 10.1126/science.1254581
    [8]
    Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698 doi: 10.1016/j.intermet.2011.01.004
    [9]
    吳炳乾, 饒湖常, 張沖, 等. Si含量對FeCoCr0.5NiBSix高熵合金涂層組織結構和耐磨性的影響. 表面技術, 2015, 44(12):85

    Wu B Q, Rao H C, Zhang C, et al. Effect of silicon content on the microstructure and wear resistance of FeCoCr0.5 NiBSix high-entropy alloy coatings. Surf Technol, 2015, 44(12): 85
    [10]
    Butler T M, Weaver M L. Influence of annealing on the microstructures and oxidation behaviors of Al8(CoCrFeNi)92, Al15(CoCrFeNi)85, and Al30(CoCrFeNi)70 high-entropy alloys. Metals, 2016, 6(9): 222 doi: 10.3390/met6090222
    [11]
    謝紅波, 劉貴仲, 郭景杰, 等. 添加Al對AlxFeCrCoCuTi高熵合金組織與高溫氧化性能的影響. 稀有金屬, 2016, 40(4):315

    Xie H B, Liu G Z, Guo J J, et al. Microstructure and high temperature oxidation properties of AlxFeCrCoCuTi high-entropy alloys with different Al contents. Rare Met, 2016, 40(4): 315
    [12]
    謝紅波, 劉貴仲, 郭景杰. Mn、V、Mo、Ti、Zr元素對AlFeCrCoCu-X高熵合金組織與高溫氧化性能的影響. 中國有色金屬學報, 2015, 25(1):103 doi: 10.1016/S1003-6326(15)63584-1

    Xie H B, Liu G Z, Guo J J. Effects of Mn, V, Mo, Ti, Zr elements on microstructure and high temperature oxidation performance of AlFeCrCoCu-X high-entropy alloys. Chin J Nonferrous Met, 2015, 25(1): 103 doi: 10.1016/S1003-6326(15)63584-1
    [13]
    Li P P, Wang A D, Liu C T. A ductile high entropy alloy with attractive magnetic properties. J Alloys Compd, 2017, 694: 55 doi: 10.1016/j.jallcom.2016.09.186
    [14]
    Zuo T T, Gao M C, Ouyang L Z, et al. Tailoring magnetic behavior of CoFeMnNiX (X=Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater, 2017, 130: 10 doi: 10.1016/j.actamat.2017.03.013
    [15]
    Zuo T T, Yang X, Liaw P K, et al. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics, 2015, 67: 171 doi: 10.1016/j.intermet.2015.08.014
    [16]
    Wang J, Zheng Z, Xu J, et al. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys. J Magn Magn Mater, 2014, 355: 58 doi: 10.1016/j.jmmm.2013.11.049
    [17]
    Komarov F F, Pogrebnyak A D, Konstantinov S V. Radiation resistance of high-entropy nanostructured (Ti, Hf, Zr, V, Nb)N coatings. Tech Phys, 2015, 60(10): 1519 doi: 10.1134/S1063784215100187
    [18]
    Nagase T, Rack P D, Noh J H, et al. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics, 2015, 59: 32 doi: 10.1016/j.intermet.2014.12.007
    [19]
    Egami T, Ojha M, Khorgolkhuu O, et al. Local electronic effects and irradiation resistance in high-entropy alloys. JOM, 2015, 67(10): 2345 doi: 10.1007/s11837-015-1579-1
    [20]
    何春靜, 劉雄軍, 張盼, 等. 粉末冶金在高熵材料中的應用. 工程科學學報, 2019, 41(12):1501

    He C J, Liu X J, Zhang P, et al. Applications of powder metallurgy technology in high-entropy materials. Chin J Eng, 2019, 41(12): 1501
    [21]
    閆薛卉, 張勇. 高熵薄膜和成分梯度材料. 表面技術, 2019, 48(6):98

    Yan X H, Zhang Y. High-entropy films and compositional gradient materials. Surf Technol, 2019, 48(6): 98
    [22]
    Feng X G, Zhang K F, Zheng Y G, et al. Chemical state, structure and mechanical properties of multi-element (CrTaNbMoV)Nx films by reactive magnetron sputtering. Mater Chem Phys, 2020, 239: 121991 doi: 10.1016/j.matchemphys.2019.121991
    [23]
    Hsieh T H, Hsu C H, Wu C Y, et al. Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films. Curr Appl Phys, 2018, 18(5): 512 doi: 10.1016/j.cap.2018.02.015
    [24]
    von Fieandt K, Paschalidou E M, Srinath A, et al. Multi-component (Al, Cr, Nb, Y, Zr)N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance. Thin Solid Films, 2020, 693: 137685 doi: 10.1016/j.tsf.2019.137685
    [25]
    Xing Q W, Xia S Q, Yan X H, et al. Mechanical properties and thermal stability of (NbTiAlSiZr)Nx high-entropy ceramic films at high temperatures. J Mater Res, 2018, 33(19): 3347 doi: 10.1557/jmr.2018.337
    [26]
    Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Technol, 2004, 188-189: 193 doi: 10.1016/j.surfcoat.2004.08.023
    [27]
    Huang P K, Yeh J W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf Coat Technol, 2009, 203(13): 1891 doi: 10.1016/j.surfcoat.2009.01.016
    [28]
    Braic V, Vladescu A, Balaceanu M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf Coat Technol, 2012, 211: 117 doi: 10.1016/j.surfcoat.2011.09.033
    [29]
    Guo H X, He C Y, Qiu X L, et al. A novel multilayer high temperature colored solar absorber coating based on high-entropy alloy MoNbHfZrTi: Optimized preparation and chromaticity investigation. Sol Energy Mater Sol Cells, 2020, 209: 110444 doi: 10.1016/j.solmat.2020.110444
    [30]
    Zhang W R, Liaw P K, Zhang Y. A novel low-activation VCrFeTaxWx (x=0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance. Entropy, 2018, 20(12): 951 doi: 10.3390/e20120951
    [31]
    Xing Q W, Ma J, Wang C, et al. High-throughput screening solar-thermal conversion films in a pseudobinary (Cr, Fe, V)?(Ta, W) system. ACS Comb Sci, 2018, 20(11): 602 doi: 10.1021/acscombsci.8b00055
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (1202) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频