Citation: | PAN Feng-wen, GONG Dong-liang, GAO ying, KOU Ya-lin. Lithium-ion battery state of charge estimation based on a robust H∞ filter[J]. Chinese Journal of Engineering, 2021, 43(5): 693-701. doi: 10.13374/j.issn2095-9389.2020.09.21.002 |
[1] |
王曉蘭, 靳皓晴, 劉祥遠. 基于融合模型的鋰離子電池荷電狀態在線估計. 工程科學學報, 2020, 42(9):1200
Wang X L, Jin H Q, Liu X Y. Online estimation of the state of charge of a lithium-ion battery based on the fusion model. Chin J Eng, 2020, 42(9): 1200
|
[2] |
蘇偉, 鐘國彬, 沈佳妮, 等. 鋰離子電池故障診斷技術進展. 儲能科學與技術, 2019, 8(2):225 doi: 10.12028/j.issn.2095-4239.2018.0195
Su W, Zhong G B, Shen J N, et al. The progress in fault diagnosis techniques for lithium-ion batteries. Energy Storage Sci Technol, 2019, 8(2): 225 doi: 10.12028/j.issn.2095-4239.2018.0195
|
[3] |
劉新天, 孫張馳, 何耀, 等. 基于環境變量建模的鋰電池SOC估計方法. 東南大學學報(自然科學版), 2017, 47(2):306 doi: 10.3969/j.issn.1001-0505.2017.02.018
Liu X T, Sun Z C, He Y, et al. SOC estimation method based on lithium-ion cell model considering environmental factors. J Southeast Univ Nat Sci Ed, 2017, 47(2): 306 doi: 10.3969/j.issn.1001-0505.2017.02.018
|
[4] |
馮代偉, 陸超, 陳勇, 等. 具有電流偏差和噪聲擾動的H∞觀測器在線估計電池SoC狀態. 電子科技大學學報, 2017, 46(4):547 doi: 10.3969/j.issn.1001-0548.2017.04.012
Feng D W, Lu C, Chen Y, et. al. Battery state-of-charge online estimation based on H∞ observer with current debasing and noise distributions. J Univ Electron Sci Technol China, 2017, 46(4): 547 doi: 10.3969/j.issn.1001-0548.2017.04.012
|
[5] |
Lin X F, Kim Y, Mohan S, et al. Modeling and estimation for advanced battery management. Ann Rev Control Rob Autonom Syst, 2019, 2: 393 doi: 10.1146/annurev-control-053018-023643
|
[6] |
Miao Z X, Xu L, Disfani V R, et al. An SOC-based battery management system for microgrids. IEEE Trans Smart Grid, 2014, 5(2): 966 doi: 10.1109/TSG.2013.2279638
|
[7] |
談發明, 趙俊杰, 王琪. 動力電池SOC估計的一種新型魯棒UKF算法. 汽車工程, 2019, 41(8):944
Tan F M, Zhao J J, Wang Q. A novel robust UKF algorithm for SOC estimation of traction battery. Autom Eng, 2019, 41(8): 944
|
[8] |
Cheng K W E, Divakar B P, Wu H J, et al. Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans Veh Technol, 2011, 60(1): 76 doi: 10.1109/TVT.2010.2089647
|
[9] |
Dey S, Ayalew B. Nonlinear observer designs for state-of-charge estimation of lithium-ion batteries // 2014 American Control Conference. Portland, 2014: 248
|
[10] |
Bhangu B S, Bentley P, Stone D A, et al. Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles. IEEE Trans Veh Technol, 2005, 54(3): 783 doi: 10.1109/TVT.2004.842461
|
[11] |
He H W, Xiong R, Fan J X. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies, 2011, 4(4): 582 doi: 10.3390/en4040582
|
[12] |
丁鎮濤, 鄧濤, 李志飛, 等. 基于安時積分和無跡卡爾曼濾波的鋰離子電池SOC估算方法研究. 中國機械工程, 2020, 31(15):1823 doi: 10.3969/j.issn.1004-132X.2020.15.009
Ding Z T, Deng T, Li Z F, et al. SOC estimation of lithium-ion battery based on ampere hour integral and unscented Kalman filter. China Mech Eng, 2020, 31(15): 1823 doi: 10.3969/j.issn.1004-132X.2020.15.009
|
[13] |
靳博文, 喬慧敏, 潘天紅, 等. 基于內阻功率消耗的鋰電池SOC估計. 汽車工程, 2020, 42(8):1008
Jin B W, Qiao H M, Pan T H, et al. Lithium battery SOC estimation based on internal resistance power consumption. Autom Eng, 2020, 42(8): 1008
|
[14] |
Codeca F, Savaresi S M, Rizzoni G. On battery state of charge estimation: A new mixed algorithm // 2008 IEEE International Conference on Control Applications. San Antonio, 2008: 102
|
[15] |
Hu Y R, Yurkovich S. Battery state of charge estimation in automotive applications using LPV techniques // Proceedings of the 2010 American Control Conference. Baltimore, 2010: 5043
|
[16] |
Hu Y, Yurkovich S. Battery cell state-of-charge estimation using linear parameter varying system techniques. J Power Sources, 2012, 198: 338 doi: 10.1016/j.jpowsour.2011.09.058
|
[17] |
Zhang Y, Zhang C H, Zhang X F. State-of-charge estimation of the lithium-ion battery system with time-varying parameter for hybrid electric vehicles. IET Control Theory Appl, 2013, 8(3): 160
|
[18] |
Liu C Z, Zhu Q, Li L, et al. A state of charge estimation method based on H∞ observer for switched systems of lithium-ion nickel-manganese-cobalt batteries. IEEE Trans Ind Electron, 2017, 64(10): 8128 doi: 10.1109/TIE.2017.2701766
|
[19] |
Dey S, Ayalew B, Pisu P. Nonlinear robust observers for state-of-charge estimation of lithium-ion cells based on a reduced electrochemical model. IEEE Trans Control Syst Technol, 2015, 23(5): 1935 doi: 10.1109/TCST.2014.2382635
|
[20] |
Wang T H, Martinez-Molina J J, Sename O. H∞ observer-based battery fault estimation for HEV application. IFAC Proc Vol, 2012, 45(30): 206 doi: 10.3182/20121023-3-FR-4025.00021
|
[21] |
Zhu Q, Li L, Hu X S, et al. H∞-based nonlinear observer design for state of charge estimation of lithium-ion battery with polynomial parameters. IEEE Trans Veh Technol, 2017, 66(12): 10853 doi: 10.1109/TVT.2017.2723522
|
[22] |
Dreef H J, Beelen H P G J, Donkers M C F. LMI-based robust observer design for battery state-of-charge estimation // 2018 IEEE Conference on Decision and Control (CDC). Miami Beach, 2018: 5716
|
[23] |
Wang B J, Liu Z Y, Li S E, et al. State-of-charge estimation for lithium-ion batteries based on a nonlinear fractional model. IEEE Trans Control Syst Technol, 2017, 25(1): 3 doi: 10.1109/TCST.2016.2557221
|
[24] |
魯偉, 續丹, 楊晴霞, 等. 鋰電池分數階建模與荷電狀態研究. 西安交通大學學報, 2017, 51(7):124
Lu W, Xu D, Yang Q X, et al. Fractional model and state-of-charge of lithium battery. J Xi'an Jiaotong Univ, 2017, 51(7): 124
|
[25] |
Lofberg J. YALMIP: A toolbox for modeling and optimization in MATLAB // 2004 IEEE International Conference on Robotics and Automation. New Orleans, 2004: 284
|
[26] |
L?fberg J. Modeling and solving uncertain optimization problems in YALMIP // Proceedings of the 17th IFAC World Congress. Seoul, 2008: 1337
|