Citation: | ZHANG Guang-tai, CHEN Yong, LU Hai-bo, LI Xue-fan. Fractal characteristics of fiber lithium slag concrete cracks under sulfate attack[J]. Chinese Journal of Engineering, 2022, 44(2): 208-216. doi: 10.13374/j.issn2095-9389.2020.09.10.001 |
[1] |
韓宇棟, 劉暢, 王振波, 等. 硫酸鹽干濕循環下ECC的軸壓力學行為. 建筑材料學報, 2020, 23(4):846 doi: 10.3969/j.issn.1007-9629.2020.04.016
Han Y D, Liu C, Wang Z B, et al. Uniaxial compressive behavior of ECC under sulfate erosion in drying-wetting cycles. J Build Mater, 2020, 23(4): 846 doi: 10.3969/j.issn.1007-9629.2020.04.016
|
[2] |
張中亞, 周建庭, 鄒楊, 等. 硫酸鹽侵蝕對混凝土抗剪性能的影響. 土木工程學報, 2020, 53(7):64
Zhang Z Y, Zhou J T, Zou Y, et al. Effect of sulfate attack on the shear performance of concrete. China Civil Eng J, 2020, 53(7): 64
|
[3] |
Wee T H, Suryavanshi A K, Wong S F, et al. Sulfate resistance of concrete containing mineral admixtures. ACI Mater J, 2000, 97(5): 536
|
[4] |
Mangat P S, Khatib J M. Influence of fly-ash, silica fume, and slag on sulfate resistance of concrete. ACI Mater J, 1993, 92(5): 542
|
[5] |
白衛峰, 劉霖艾, 管俊峰, 等. 基于統計損傷理論的硫酸鹽侵蝕混凝土本構模型研究. 工程力學, 2019, 36(2):66 doi: 10.6052/j.issn.1000-4750.2017.09.0734
Bai W F, Liu L A, Guan J F, et al. The constitutive model of concrete subjected to sulfate attack based on statistical damage theory. Eng Mech, 2019, 36(2): 66 doi: 10.6052/j.issn.1000-4750.2017.09.0734
|
[6] |
寇佳亮, 劉菲菲, 趙丹丹, 等. 常溫養護條件下活性粉末混凝土抗硫酸鹽侵蝕性能試驗研究. 自然災害學報, 2020, 29(3):76
Kou J L, Liu F F, Zhao D D, et al. Experimental study on resistance to sulfate attack of active powder concrete under normal temperature curing condition. J Nat Disast, 2020, 29(3): 76
|
[7] |
石亮, 謝德擎, 王學明, 等. 抗侵蝕抑制劑對混凝土吸水性能及抗鹽結晶性能的影響. 材料導報, 2020, 34(14):14093 doi: 10.11896/cldb.19060175
Shi L, Xie D, Wang X M, et al. Effect of liquid erosion inhibitor on water absorption and salt crystallization resistance of concrete. Materi Rev, 2020, 34(14): 14093 doi: 10.11896/cldb.19060175
|
[8] |
李北星, 方晴, 方鵬. 大摻量摻合料混凝土半浸泡于硫酸鹽溶液中的耐久性. 哈爾濱工程大學學報, 2020, 41(6):892
Li B X, Fang Q, Fang P. Durability of high-volume mineral admixture concrete half immersed in sodium sulfate solution. J Harbin Eng Univ, 2020, 41(6): 892
|
[9] |
逯靜洲, 田立宗, 劉瑩, 等. 軸壓與硫酸鹽實時耦合作用下混凝土耐久性試驗研究. 應用基礎與工程科學學報, 2020, 28(2):386
Lu J Z, Tian L Z, Liu Y, et al. Experimental study of the durability of concrete under coupling effect of axial compression and sulfate attack. J Basic Sci Eng, 2020, 28(2): 386
|
[10] |
肖前慧, 曹志遠, 關虓, 等. 凍融與硫酸鹽侵蝕耦合作用下再生混凝土劣化規律. 硅酸鹽通報, 2020, 39(2):352
Xiao Q H, Cao Z Y, Guan X, et al. Degradation law of recycled concrete under the coupling of freeze-thaw and sulfate erosion. Bull Chin Ceram Soc, 2020, 39(2): 352
|
[11] |
李保亮, 霍彬彬, 尤南喬, 等. 不同養護條件下鋼渣/礦渣復合水泥膠砂的耐硫酸鹽侵蝕性能. 東南大學學報(自然科學版), 2019, 49(6):1144 doi: 10.3969/j.issn.1001-0505.2019.06.018
Li B L, Huo B B, You N Q, et al. Sulfate resistance of steel slag blended / GGBFS blended cement mortars under different curing conditions. J Southeast Univ Nat Sci, 2019, 49(6): 1144 doi: 10.3969/j.issn.1001-0505.2019.06.018
|
[12] |
Tuerkmen I, Gavgali M. Influence of mineral admixtures on the some properties and corrosion of steel embedded in sodium sulfate solution of concrete. Mater Lett, 2003, 57(21): 3222 doi: 10.1016/S0167-577X(03)00039-9
|
[13] |
Mandelbrot B B, Passoja D E, Paullay A J. Fractal character of fracture surfaces of metals. Nature, 1984, 308(5961): 721 doi: 10.1038/308721a0
|
[14] |
Armandei M, de Souza Sanchez Filho E. Correlation between fracture roughness and material strength parameters in SFRCs using 2D image analysis. Constr Build Mater, 2017, 140: 82 doi: 10.1016/j.conbuildmat.2017.02.103
|
[15] |
Yan A, Wu K R, Zhang D, et al. Influence of concrete composition on the characterization of fracture surface. Cem Concr Compos, 2003, 25(1): 153 doi: 10.1016/S0958-9465(02)00004-5
|
[16] |
Ince R G?r M, Alyama? K E, et al. Multi-fractal scaling law for split strength of concrete cubes. Mag Concr Res, 2016, 68(3): 141 doi: 10.1680/macr.15.00070
|
[17] |
Konkol J, Prokopski G. Fracture toughness and fracture surfaces morphology of metakaolinite-modified concrete. Constr Build Mater, 2016, 123: 638 doi: 10.1016/j.conbuildmat.2016.07.025
|
[18] |
成盛, 金南國, 田野, 等. 混凝土裂縫特征參數的圖形化定量分析新方法. 浙江大學學報(工學版), 2011, 45(6):1062 doi: 10.3785/j.issn.1008-973X.2011.06.017
Cheng S, Jin N G, Tian Y, et al. New graphic method for quantitatively analyzing characteristic parameters of concrete cracks. J Zhejiang Univ Eng Sci, 2011, 45(6): 1062 doi: 10.3785/j.issn.1008-973X.2011.06.017
|
[19] |
曹茂森, 任青文. 鋼筋混凝土結構損傷檢測的分形特征因子. 土木工程學報, 2005, 38(12):59 doi: 10.3321/j.issn:1000-131X.2005.12.010
Cao M S, Ren Q W. Damage detection of reinforced concrete structures based on fractal characteristic factor. China Civil Eng J, 2005, 38(12): 59 doi: 10.3321/j.issn:1000-131X.2005.12.010
|
[20] |
焦楚杰, 李習波, 程從密, 等. 基于分形理論的高強混凝土動態損傷本構關系. 爆炸與沖擊, 2018, 38(4):925
Jiao C J, Li X B, Cheng C M, et al. Dynamic damage constitutive relationship of high strength concrete based on fractal theory. Explos Shock Waves, 2018, 38(4): 925
|
[21] |
陳萬春, 師暉軍, 晁宗棋. 基于分形理論的鋼筋混凝土梁式橋裂縫發育特征. 長安大學學報(自然科學版), 2003, 23(6):44
Chen W C, Shi H J, Chao Z Q. Developing nature of cracks in reinforced concrete beam bridge with fractal theory. J Chang'an Univ Nat Sci, 2003, 23(6): 44
|
[22] |
李艷艷, 戎賢, 王鐵成. 高強箍筋混凝土梁裂縫分布的分形特征. 工程力學, 2009, 26(增刊1): 72
Li Y Y, Rong X, Wang T C. Fractal characteristics of crack distribution of concrete beams with high strength stirrup. Eng Mech, 2009, 26(Suppl1): 72
|
[23] |
范穎芳, 周晶, 馮新. 受腐蝕鋼筋混凝土構件破壞過程的分形行為. 工程力學, 2002, 19(5):123 doi: 10.3969/j.issn.1000-4750.2002.05.023
Fan Y F, Zhou J, Feng X. Fractals in failure of corroded reinforced concrete members. Eng Mech, 2002, 19(5): 123 doi: 10.3969/j.issn.1000-4750.2002.05.023
|
[24] |
欒海洋, 范穎芳, 王大為, 等. 基于分形理論的CFRP布增強混凝土梁抗彎性能研究. 工程力學, 2015, 32(4):160
Luan H Y, Fan Y F, Wang D W, et al. Study on the flexural behavior of the CFRP-reinforced concrete beam with fractal theory. Eng Mech, 2015, 32(4): 160
|
[25] |
中華人民共和國住房和城鄉建設部. GB/T50081—2019混凝土物理力學性能試驗方法標準. 北京: 中國建筑工業出版社, 2019
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB50081—2019 Standard for Test Methods of Concrete Physical and Mechanical Properties. Beijing: China Architecture & Building Press, 2019
|
[26] |
中華人民共和國住房和城鄉建設部. GB/T50152—2012混凝土結構試驗方法標準. 北京: 中國建筑工業出版社, 2012
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB/T50152—2012 Standard for Test Method of Concrete Structures. Beijing: China Architecture & Building Press, 2012
|
[27] |
Mandelbrot B B. The Fractal Geometry of Nature. San Francisco: W. H. Freeman and Company, 1982
|
[28] |
劉娟紅, 趙力, 紀洪廣. 初始損傷對混凝土硫酸鹽腐蝕劣化性能的影響. 工程科學學報, 2017, 39(8):1278
Liu J H, Zhao L, Ji H G. Influence of initial damage on degradation and deterioration of concrete under sulfate attack. Chin J Eng, 2017, 39(8): 1278
|
[29] |
溫勇, 徐虎, 韓東明. 鋰渣粉對水泥基材料抗硫酸鹽侵蝕性能的影響. 混凝土, 2010(12):90 doi: 10.3969/j.issn.1002-3550.2010.12.029
Wen Y, Xu H, Han D M. Study on the effect of lithium slag powders upon the sulfate corrosion resistance of cement material. Concrete, 2010(12): 90 doi: 10.3969/j.issn.1002-3550.2010.12.029
|