Citation: | TANG Shu-lan, MENG Yong, WANG Guo-qiang, BU Tao. Extraction of metamorphic minerals by multiscale segmentation combined with random forest[J]. Chinese Journal of Engineering, 2022, 44(2): 170-179. doi: 10.13374/j.issn2095-9389.2020.09.08.004 |
[1] |
Diener J F A, White R W, Link K, et al. Clockwise, low-P metamorphism of the Aus qranulite terrain, southern Namibia, during the Mesoproterozoic Namaqua Oroqeny. Precambrian Res, 2013, 224: 629 doi: 10.1016/j.precamres.2012.11.009
|
[2] |
謝明輝, 張奇, 陳圣波, 等. 基于特征導向主成分分析遙感蝕變異常提取方法. 地球科學—中國地質大學學報, 2015, 40(8):1381
Xie M H, Zhang Q, Chen S B, et al. Extraction of alteration anomaly information by feature-based principal component analysis from ASTER data. Editorial Committe Earth Sci J China Univ Geosci, 2015, 40(8): 1381
|
[3] |
Zadeh M H, Tangestani M H, Roldan F V, et al. Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Adv Space Res, 2014, 53(3): 440 doi: 10.1016/j.asr.2013.11.029
|
[4] |
吳志春, 葉發旺, 郭福生, 等. 主成分分析技術在遙感蝕變信息提取中的應用研究綜述. 地球信息科學學報, 2018, 20(11):1644 doi: 10.12082/dqxxkx.2018.180195
Wu Z C, Ye F W, Guo F S, et al. A review on application of techniques of principle component analysis on extracting alteration information of remote sensing. J Geo-Inf Sci, 2018, 20(11): 1644 doi: 10.12082/dqxxkx.2018.180195
|
[5] |
劉義志, 賴華榮, 張丁旺, 等. 多特征混合核 SVM 模型的遙感影像變化檢測. 國土資源遙感, 2019, 31(1):16
Liu Y Z, Lai H R, Zhang D W, et al. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model. Remote Sens Land Resour, 2019, 31(1): 16
|
[6] |
何中海, 何彬彬. 基于權重光譜角制圖的高光譜礦物填圖方法. 光譜學與光譜分析, 2011, 31(8):2200 doi: 10.3964/j.issn.1000-0593(2011)08-2200-05
He Z H, He B B. Weight spectral angle mapper (WSAM) method for hyperspectral mineral mapping. Spectrosc Spectr Anal, 2011, 31(8): 2200 doi: 10.3964/j.issn.1000-0593(2011)08-2200-05
|
[7] |
Kaur S, Bansal R K, Mittal M, et al. Mixed pixel decomposition based on extended fuzzy clustering for single spectral value remote sensing images. J Indian Soc Remote Sens, 2019, 47(3): 427 doi: 10.1007/s12524-019-00946-2
|
[8] |
馮文卿, 眭海剛, 涂繼輝, 等. 高分辨率遙感影像的隨機森林變化檢測方法. 測繪學報, 2017, 46(11):1880 doi: 10.11947/j.AGCS.2017.20170074
Feng W Q, Sui H G, Tu J H, et al. Change detection method for high resolution remote sensing images using random forest. Acta Geodaet Cartograph Sin, 2017, 46(11): 1880 doi: 10.11947/j.AGCS.2017.20170074
|
[9] |
Booysen R, Zimmermann R, Lorenz S, et al. Towards multiscale and multisource remote sensing mineral exploration using RPAS: a case study in the Lofdal carbonatite-hosted REE deposit, Namibia. Remote Sens, 2019, 11(21): 2500 doi: 10.3390/rs11212500
|
[10] |
Cid Y D, Muller H, Platon A, et al. 3D solid texture classification using locally-oriented wavelet transforms. IEEE Trans Image Process, 2017, 26(4): 1899 doi: 10.1109/TIP.2017.2665041
|
[11] |
王猛, 張新長, 王家耀, 等. 結合隨機森林面向對象的森林資源分類. 測繪學報, 2020, 49(2):235 doi: 10.11947/j.AGCS.2020.20190272
Wang M, Zhang X C, Wang J Y, et al. Forest resource classification based on random forest and object oriented method. Acta Geodaet Cartograph Sin, 2020, 49(2): 235 doi: 10.11947/j.AGCS.2020.20190272
|
[12] |
游永發, 王思遠, 王斌, 等. 高分辨率遙感影像建筑物分級提取. 遙感學報, 2019, 23(1):125
You Y F, Wang S Y, Wang B, et al. Study on hierarchical building extraction from high resolution remote sensing imagery. J Remote Sens, 2019, 23(1): 125
|
[13] |
李江昀, 趙義凱, 薛卓爾, 等. 深度神經網絡模型壓縮綜述. 工程科學學報, 2019, 41(10):1229
Li J Y, Zhao Y K, Xue Z E, et al. A survey of model compression for deep neural networks. Chin J Eng, 2019, 41(10): 1229
|
[14] |
Cracknell M J, Reading A M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput Geosci, 2014, 63: 22 doi: 10.1016/j.cageo.2013.10.008
|
[15] |
Harris J. R, He J X, Rainbird R, et al. A comparison of different remotely sensed data for classifying bedrock types in Canada’s arctic: application of the robust classification method and random forests. Geosci Can, 2014, 41(4): 557
|
[16] |
Hossain M D, Chen D M. Segmentation for object-based image analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS J Photogramm Remote Sens, 2019, 150: 115 doi: 10.1016/j.isprsjprs.2019.02.009
|
[17] |
Diaz G F, Ortiz J M, Silva J F, et al. Variogram-based descriptors for comparison and classification of rock texture images. Math Geosci, 2020, 52(4): 451 doi: 10.1007/s11004-019-09833-5
|
[18] |
Zhang L, Liu Z, Ren T W, et al. Identification of seed maize fields with high spatial resolution and multiple spectral remote sensing using random forest classifier. Remote Sens, 2020, 12(3): 362 doi: 10.3390/rs12030362
|
[19] |
朱俊杰, 范湘濤, 杜小平. 幾何特征表達及基于幾何特征的建筑物提取. 應用科學學報, 2015, 33(1):9 doi: 10.3969/j.issn.0255-8297.2015.01.002
Zhu J J, Fan X T, Du X P. Geometric feature representation and building extraction based on geometric features. J Appl Sci, 2015, 33(1): 9 doi: 10.3969/j.issn.0255-8297.2015.01.002
|
[20] |
Masoumi F, Eslamkish T, Abkar A A, et al. Integration of spectral, thermal, and textural features of ASTER data using random forests classification for lithological mapping. J Afric Earth Sci, 2017, 129: 445 doi: 10.1016/j.jafrearsci.2017.01.028
|
[21] |
Pournamdari M, Hashim M, Pour A B. Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, South Iran. Adv Space Res, 2014, 54(4): 694 doi: 10.1016/j.asr.2014.04.022
|
[22] |
張博, 何彬彬. 改進的分水嶺變換算法在高分辨率遙感影像多尺度分割中的應用. 地球信息科學學報, 2014, 16(1):142
Zhang B, He B B. Multi-scale segmentation of high-resolution remote sensing image based on improved watershed transformation. J Geo-Inf Sci, 2014, 16(1): 142
|