<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
SUN Da-wei, DENG Jun. Chlorine gas absorption performance of steel-slag-based biomass-activated carbon prepared via modified discarded walnut shell[J]. Chinese Journal of Engineering, 2021, 43(7): 946-951. doi: 10.13374/j.issn2095-9389.2020.08.04.004
Citation: SUN Da-wei, DENG Jun. Chlorine gas absorption performance of steel-slag-based biomass-activated carbon prepared via modified discarded walnut shell[J]. Chinese Journal of Engineering, 2021, 43(7): 946-951. doi: 10.13374/j.issn2095-9389.2020.08.04.004

Chlorine gas absorption performance of steel-slag-based biomass-activated carbon prepared via modified discarded walnut shell

doi: 10.13374/j.issn2095-9389.2020.08.04.004
More Information
  • Corresponding author: E-mail: dengj518@xust.edu.cn
  • Received Date: 2020-08-04
    Available Online: 2020-11-13
  • Publish Date: 2021-07-01
  • Discarded walnut shells were modified by the chemical composition of special steel slag ultrafine powder to obtain steel-slag-based biomass-activated carbon. The influences of the mass ratio of discarded walnut shell ultrafine powder and special steel slag ultrafine powder, the fineness of special steel slag ultrafine powder, and adsorption ambient temperature on the absorbed chlorine gas performance of steel-slag-based biomass-activated carbon were studied. Results show good chlorine gas absorption performance when the mass ratio of discarded walnut shell ultrafine powder and special steel slag ultrafine powder is 100∶6, the fineness of special steel slag ultrafine powder is 600 mesh, and adsorption ambient temperature is 30 ℃. The magnetic property of Fe2O3 in special steel slag ultrafine powder is conducive to the formation and enrichment of chlorine gas on the surface of steel-slag-based biomass-activated carbon, improving its absorption performance. Catalytic performance of CuO and MnO helps promote the absorbing performance of steel-slag-based biomass-activated carbon. When the fineness of special steel slag ultrafine powder is excessively large, agglomeration of small particle size occurs and affects the adsorption capacity of steel-slag-based biomass-activated carbon to chlorine gas. When the particle size of special steel slag ultrafine powder is small, the special steel slag ultrafine powder with good uniformity is less effective in improving the adsorption of chlorine on the steel-slag-based biomass-activated carbon. The higher adsorption ambient temperature may lead to the analytical phenomenon of chlorine gas from steel-slag-based biomass-activated carbon. Moreover, no superfine agglomeration and deposition of special steel slag ultrafine powder on the surface of steel-slag-based biomass-activated carbon are observed. The obtained carbon exhibits the layered structure characteristics and provides space for chlorine gas adsorption.

     

  • loading
  • [1]
    Li J F, Zhang B, Liu W M. A typical small-scale chlorine leak and dispersion simulation in industrial facilities. Int J Energy Environ, 2011, 2(6): 1039
    [2]
    張浩. 基于光催化性能的Cu?Ce/TiO2濕性能. 材料工程, 2018, 46(1):114 doi: 10.11868/j.issn.1001-4381.2016.001100

    Zhang H. Cu?Ce/TiO2 moisture performance based on photocatalytic performance. J Mater Eng, 2018, 46(1): 114 doi: 10.11868/j.issn.1001-4381.2016.001100
    [3]
    張浩, 黃新杰, 宗志芳, 等. 基于吸附性能的生物質基多孔活性炭制備方案的響應面法優化. 材料工程, 2017, 45(6):67 doi: 10.11868/j.issn.1001-4381.2016.000979

    Zhang H, Huang X J, Zong Z F, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property. J Mater Eng, 2017, 45(6): 67 doi: 10.11868/j.issn.1001-4381.2016.000979
    [4]
    Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd, 2019, 781: 201 doi: 10.1016/j.jallcom.2018.11.375
    [5]
    Ding A W. A theoretical model of public response to the homeland security advisory system. J Defense Model Simul, 2006, 3(1): 45 doi: 10.1177/875647930600300105
    [6]
    Hsu N Y, Chen P Y, Chang H W, et al. Changes in profiles of airborne fungi in flooded homes in southern Taiwan after Typhoon Morakot. Sci Total Environ, 2011, 409(9): 1677 doi: 10.1016/j.scitotenv.2011.01.042
    [7]
    Zhang X L, Zhang Y, Wang S S, et al. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon. Sci China Technol Sci, 2010, 53(9): 2515 doi: 10.1007/s11431-010-4058-5
    [8]
    Sun Y, Webley P A. Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chem Eng J, 2010, 162(3): 883 doi: 10.1016/j.cej.2010.06.031
    [9]
    張浩. 基于傅里葉紅外光譜的生物質環境協調功能材料制備機理及性能研究. 光譜學與光譜分析, 2017, 37(2):412

    Zhang H. Study on preparation mechanism and property of biomass environmental coordination function material with Fourier transform infrared spectrum. Spectrosc Spectr Anal, 2017, 37(2): 412
    [10]
    Sun K, Jiang J C. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass Bioenergy, 2010, 34(4): 539 doi: 10.1016/j.biombioe.2009.12.020
    [11]
    Fang N J, Guo J X, Shu S, et al. Influence of textures, oxygen-containing functional groups and metal species on SO2 and NO removal over Ce?Mn/NAC. Fuel, 2017, 202: 328 doi: 10.1016/j.fuel.2017.04.035
    [12]
    Ding J, Zhong Q, Zhang S L. Catalytic efficiency of iron oxides in decomposition of H2O2, for simultaneous NOX and SO2 removal: Effect of calcination temperature. J Mol Catal A Chem, 2014, 393: 222 doi: 10.1016/j.molcata.2014.06.018
    [13]
    Ramezanianpour A A, Kazemian A, Moghaddam M A, et al. Studying effects of low-reactivity GGBFS on chloride resistance of conventional and high strength concretes. Mater Struct, 2016, 49(7): 2597 doi: 10.1617/s11527-015-0670-y
    [14]
    Morel F, Bounor-Legaré V, Espuche E, et al. Surface modification of calcium carbonate nanofillers by fluoro- and alkyl-alkoxysilane: consequences on the morphology, thermal stability and gas barrier properties of polyvinylidene fluoride nanocomposites. Eur Polym J, 2012, 48(5): 919 doi: 10.1016/j.eurpolymj.2012.03.004
    [15]
    劉天成. 鋼渣高效活化及在綠色建材中的應用[學位論文]. 長沙: 中南大學, 2008

    Liu T C. The Highly Effective Technology to Active Steel Slag and Its Application in Green Construct Materials [Dissertation]. Changsha: Central South University, 2008
    [16]
    張朝暉, 廖杰龍, 巨建濤, 等. 鋼渣處理工藝與國內外鋼渣利用技術. 鋼鐵研究學報, 2013, 25(7):1

    Zhang Z H, Liao J L, Ju J T, et al. Treatment process and utilization technology of steel slag in China and abroad. J Iron Steel Res, 2013, 25(7): 1
    [17]
    Murri A N, Rickard W D A, Bignozzi M C, et al. High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cem Concr Res, 2013, 43: 51 doi: 10.1016/j.cemconres.2012.09.011
    [18]
    張浩, 徐遠迪, 張磊, 等. 鋼渣改性活性炭的制備及其降解甲醛性能. 過程工程學報, 2019, 19(6):1228 doi: 10.12034/j.issn.1009-606X.219132

    Zhang H, Xu Y D, Zhang L, et al. Preparation of steel slag modified activated carbon and its formaldehyde degradation performance. Chin J Process Eng, 2019, 19(6): 1228 doi: 10.12034/j.issn.1009-606X.219132
    [19]
    Chuang K H, Lu C Y, Wey M Y, et al. NO removal by activated carbon-supported copper catalysts prepared by impregnation, polyol, and microwave heated polyol processes. Appl Catal A, 2011, 397(1-2): 234 doi: 10.1016/j.apcata.2011.03.003
    [20]
    張浩, 楊剛, 劉秀玉, 等. 鋼渣微粉對牛糞厭氧發酵產沼氣的影響. 非金屬礦, 2016, 39(5):45 doi: 10.3969/j.issn.1000-8098.2016.05.015

    Zhang H, Yang G, Liu X Y, et al. Influences of steel slag powder on anaerobic fermentation of cattle manure for biogas yield. Non-Metallic Mines, 2016, 39(5): 45 doi: 10.3969/j.issn.1000-8098.2016.05.015
    [21]
    王慧娟, 肖偉強, 薛建偉, 等. 活性炭吸附氯氣的性能研究. 山西化工, 2010, 30(3):1 doi: 10.3969/j.issn.1004-7050.2010.03.001

    Wang H J, Xiao W Q, Xue J W, et al. Chlorine adsorption properties of activated carbon. Shanxi Chem Ind, 2010, 30(3): 1 doi: 10.3969/j.issn.1004-7050.2010.03.001
    [22]
    Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater, 2006, 18(6): 2073
    [23]
    Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd, 2019, 781: 201
    [24]
    張浩. 鋼渣改性生物質廢棄材料制備生態活性炭及其降解甲醛性能. 工程科學學報, 2020, 42(2):172

    Zhang H. Preparation of ecological activated carbon based on steel slag-modified biomass waste material and its formaldehyde degradation performance. Chin J Eng, 2020, 42(2): 172
    [25]
    韓彬, 周美華, 榮達. 稻草秸稈活性炭的制備及其表征. 農業環境科學學報, 2009, 28(4):828 doi: 10.3321/j.issn:1672-2043.2009.04.034

    Han B, Zhou M H, Rong D. Preparation and characterization of activated carbon from rice straw. J Agro-Environ Sci, 2009, 28(4): 828 doi: 10.3321/j.issn:1672-2043.2009.04.034
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(2)  / Tables(6)

    Article views (967) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频