Citation: | ZHANG Jun-hui, LI Qing, CHEN Da-peng, ZHAO Ye. Real-time SOC co-estimation algorithm for Li-ion batteries based on fast square-root unscented Kalman filters[J]. Chinese Journal of Engineering, 2021, 43(7): 976-984. doi: 10.13374/j.issn2095-9389.2020.07.30.002 |
[1] |
Zhang H K, Wang Y F, Qi H, et al. Active battery equalization method based on redundant battery for electric vehicles. IEEE Trans Veh Technol, 2019, 68(8): 7531 doi: 10.1109/TVT.2019.2925742
|
[2] |
安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22
An F Q, Zhao H L, Chen Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22
|
[3] |
Afshar S, Morris K, Khajepour A. State-of-charge estimation using an EKF-based adaptive observer. IEEE Trans Control Syst Technol, 2019, 27(5): 1907 doi: 10.1109/TCST.2018.2842038
|
[4] |
Petzl M, Danzer M A. Advancements in OCV measurement and analysis for lithium-ion batteries. IEEE Trans Energy Convers, 2013, 28(3): 675 doi: 10.1109/TEC.2013.2259490
|
[5] |
Xiong R, Zhang Y Z, He H W, et al. A double-scale, particle-filtering, energy state prediction algorithm for lithium-ion batteries. IEEE Trans Ind Electron, 2018, 65(2): 1526 doi: 10.1109/TIE.2017.2733475
|
[6] |
Partovibakhsh M, Liu G J. An adaptive unscented Kalman filtering approach for online estimation of model parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots. IEEE Trans Control Syst Technol, 2015, 23(1): 357 doi: 10.1109/TCST.2014.2317781
|
[7] |
Chaoui H, Ibe-Ekeocha C C. State of charge and state of health estimation for lithium batteries using recurrent neural networks. IEEE Trans Veh Technol, 2017, 66(10): 8773 doi: 10.1109/TVT.2017.2715333
|
[8] |
Wu J, Zhang C B, Chen Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl Energy, 2016, 173: 134 doi: 10.1016/j.apenergy.2016.04.057
|
[9] |
Chun C Y, Cho B H, Kim J. Implementation of discharging/charging current sensorless state-of-charge estimator reflecting cell-to-cell variations in lithium-ion series battery packs. Int J Automot Technol, 2016, 17(5): 909 doi: 10.1007/s12239-016-0088-8
|
[10] |
Weng C H, Sun J, Peng H. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring. J Power Sources, 2014, 258: 228 doi: 10.1016/j.jpowsour.2014.02.026
|
[11] |
Lavigne L, Sabatier J, Francisco J M, et al. Lithium-ion open circuit voltage (OCV) curve modelling and its ageing adjustment. J Power Sources, 2016, 324: 694 doi: 10.1016/j.jpowsour.2016.05.121
|
[12] |
Paschero M, Storti G L, Rizzi A, et al. A novel mechanical analogy-based battery model for SoC estimation using a multi-cell EKF. IEEE Trans Sustainable Energy, 2016, 7(4): 1695 doi: 10.1109/TSTE.2016.2574755
|
[13] |
章軍輝, 李慶, 陳大鵬, 等. 基于自適應UKF的鋰離子動力電池狀態聯合估計. 東北大學學報(自然科學版), 2020, 41(11):1557
Zhang J H, Li Q, Chen D P, et al. State Co-estimation algorithm for li-ion power batteries based on adaptive unscented kalman filters. J Northeast Univ Nat Sci, 2020, 41(11): 1557
|
[14] |
Wang D, Yang F F, Tsui K L, et al. Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter. IEEE Trans Instrum Meas, 2016, 65(6): 1282 doi: 10.1109/TIM.2016.2534258
|
[15] |
Takeno K, Ichimura M, Takano K, et al. Quick testing of batteries in lithium-ion battery packs with impedance-measuring technology. J Power Sources, 2004, 128(1): 67 doi: 10.1016/j.jpowsour.2003.09.045
|
[16] |
Abraham D P, Knuth J L, Dees D W, et al. Performance degradation of high-power lithium-ion cells: electrochemistry of harvested electrodes. J Power Sources, 2007, 170(2): 465 doi: 10.1016/j.jpowsour.2007.03.071
|
[17] |
Klass V, Behm M, Lindbergh G. A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J Power Sources, 2014, 270: 262 doi: 10.1016/j.jpowsour.2014.07.116
|
[18] |
El Mejdoubi A, Chaoui H, Gualous H, et al. Lithium-ion batteries health prognosis considering aging conditions. IEEE Trans Power Electron, 2019, 34(7): 6834 doi: 10.1109/TPEL.2018.2873247
|
[19] |
Van der Merwe R, Wan E A. The square-root unscented Kalman filter for state and parameter-estimation // Proceedings of 2001 IEEE International Conference on Acoustics, Speech and Signal Processing. Salt Lake City, 2001: 3461
|
[20] |
Aung H, Low K S, Goh S T. State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite. IEEE Trans Power Electron, 2015, 30(9): 4774 doi: 10.1109/TPEL.2014.2361755
|
[21] |
Gholizade-Narm H, Charkhgard M. Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter. IET Power Electron, 2013, 6(9): 1833 doi: 10.1049/iet-pel.2012.0706
|
[22] |
Lin H T, Liang T J, Chen S M. Estimation of battery state of health using probabilistic neural network. IEEE Trans Ind Inf, 2013, 9(2): 679 doi: 10.1109/TII.2012.2222650
|
[23] |
Kim J, Cho B H. State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system. IEEE Trans Veh Technol, 2011, 60(9): 4249 doi: 10.1109/TVT.2011.2168987
|
[24] |
Shen J N, Shen J J, He Y J, et al. Accurate state of charge estimation with model mismatch for Li-ion batteries: a joint moving horizon estimation approach. IEEE Trans Power Electron, 2019, 34(5): 4329 doi: 10.1109/TPEL.2018.2861730
|
[25] |
Yu Q Q, Xiong R, Lin C, et al. Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters. IEEE Trans Veh Technol, 2017, 66(10): 8693 doi: 10.1109/TVT.2017.2709326
|