<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
LIU Xiao-juan, WANG Lian-guo. A sine cosine algorithm based on differential evolution[J]. Chinese Journal of Engineering, 2020, 42(12): 1674-1684. doi: 10.13374/j.issn2095-9389.2020.07.26.002
Citation: LIU Xiao-juan, WANG Lian-guo. A sine cosine algorithm based on differential evolution[J]. Chinese Journal of Engineering, 2020, 42(12): 1674-1684. doi: 10.13374/j.issn2095-9389.2020.07.26.002

A sine cosine algorithm based on differential evolution

doi: 10.13374/j.issn2095-9389.2020.07.26.002
More Information
  • Corresponding author: E-mail: wanglg@gsau.edu.cn
  • Received Date: 2020-07-26
  • Publish Date: 2020-12-25
  • In 2016, a novel naturally simulated optimization algorithm, termed the sine cosine algorithm (SCA), was proposed by Seyedali Mirjalili from Australia. This algorithm uses the sine cosine mathematical model to solve optimization problems and has attracted extensive attention from numerous scholars and researchers at home and abroad over the last few years. However, similar to other swarm intelligence optimization algorithms, SCA has numerous shortcomings in optimizing some complex function problems. To address the defects of basic SCA, such as low optimization precision, easy dropping into the local extremum, and slow convergence rate, a sine cosine algorithm based on differential evolution (SCADE) was proposed. First, the search capabilities of the new algorithm was improved by adjusting parameter r1 in a nonlinear manner and ensuring that each individual adopts the same parameters r1, r2, r3, and r4. Then, differential evolution strategies, including crossover, variation, and selection, were adopted to fully utilize the leading role of the globally optimal individual and information of other individuals in the population. This approach balanced the global exploration and local development abilities and accelerated the convergence rate of the algorithm. Next, using the reconnaissance bees’ strategy, random initialization was performed on individuals whose fitness values showed no improvement in continuous nlim times, which increased the population diversity and improved the global exploration ability of the algorithm. Moreover, the globally optimal individual variation strategy was used to conduct a fine search near the optimal solution, which enhanced the local development ability and optimization accuracy of the algorithm. Based on the above optimization strategies, the algorithm exhibits improvements and its excellent performance is validated by the result analysis of a simulation experiment.

     

  • loading
  • [1]
    Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst, 2016, 96: 120 doi: 10.1016/j.knosys.2015.12.022
    [2]
    劉勇, 馬良. 轉換參數非線性遞減的正弦余弦算法. 計算機工程與應用, 2017, 53(2):1 doi: 10.3778/j.issn.1002-8331.1608-0349

    Liu Y, Ma L. Sine cosine algorithm with nonlinear decreasing conversion parameter. Comput Eng Appl, 2017, 53(2): 1 doi: 10.3778/j.issn.1002-8331.1608-0349
    [3]
    徐松金, 龍文. 求解高維優化問題的改進正弦余弦算法. 計算機應用研究, 2018, 35(9):2574 doi: 10.3969/j.issn.1001-3695.2018.09.003

    Xu S J, Long W. Improved sine cosine algorithm for solving high-dimensional optimization problems. Appl Res Comput, 2018, 35(9): 2574 doi: 10.3969/j.issn.1001-3695.2018.09.003
    [4]
    石磊. 一種改進的正弦余弦優化算法[學位論文]. 武漢: 武漢大學, 2018

    Shi B. A Modified Sine-Cosine Algorithm for Solving Optimization Problems[Dissertation]. Wuhan: Wuhan University, 2018
    [5]
    于坤, 焦青亮, 劉子龍, 等. 基于改進正弦余弦算法的光譜特征峰定位方法. 光學學報, 2019, 39(9):403

    Yu K, Jiao Q L, Liu Z L, et al. Positioning of characteristic spectral peaks based on improved sine cosine algorithm. Acta Opt Sin, 2019, 39(9): 403
    [6]
    郭文艷, 王遠, 戴芳, 等. 基于精英混沌搜索策略的交替正余弦算法. 控制與決策, 2019, 34(8):1654

    Guo W Y, Wang Y, Dai F, et al. Alternating sine cosine algorithm based on elite chaotic search strategy. Control Decis, 2019, 34(8): 1654
    [7]
    方旭陽, 武相軍, 游大濤. 具有學習機制的正弦余弦算法. 計算機應用研究, 2020, 37(3):809

    Fang X Y, Wu X J, You D T. Sine cosine algorithm with learning mechanism. Appl Res Comput, 2020, 37(3): 809
    [8]
    徐明, 焦建軍, 龍文. 基于Logistic模型和隨機差分變異的正弦余弦算法. 計算機科學, 2020, 47(2):206 doi: 10.11896/jsjkx.181102197

    Xu M, Jiao J J, Long W. Sine cosine algorithm based on Logistic model and stochastic differential mutation. Comput Sci, 2020, 47(2): 206 doi: 10.11896/jsjkx.181102197
    [9]
    郎春博, 賈鶴鳴, 邢致愷, 等. 基于改進正余弦優化算法的多閾值圖像分割. 計算機應用研究, 2020, 37(4):1215

    Lang C B, Jia H M, Xing Z K, et al. Multi-threshold image segmentation based on improved sine cosine optimization algorithm. Appl Res Comput, 2020, 37(4): 1215
    [10]
    Gupta S, Deep K. Improved sine cosine algorithm with crossover scheme for global optimization. Knowl-Based Syst, 2019, 165: 374 doi: 10.1016/j.knosys.2018.12.008
    [11]
    Gupta S, Deep K. A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl, 2019, 119: 210 doi: 10.1016/j.eswa.2018.10.050
    [12]
    Kumar L, Bharti K K. A novel hybrid BPSO-SCA approach for feature selection. Nat Comput, 2019 doi: 10.1007/s11047-019-09769-z
    [13]
    Guo W Y, Wang Y, Zhao F Q, et al. Riesz fractional derivative Elite-guided sine cosine algorithm. Appl Soft Comput, 2019, 81: 105481 doi: 10.1016/j.asoc.2019.04.044
    [14]
    Mouhoub Belazzoug, Mohamed Touahria, Farid Nouioua, et al. An improved sine cosine algorithm to select features for text categorization. King Saud University - Computer and Information Sciences, 2020, 32(4): 454 doi: 10.1016/j.jksuci.2019.07.003
    [15]
    Guo W Y, Wang Y, Dai F, et al. Improved sine cosine algorithm combined with optimal neighborhood and quadratic interpolation strategy. Eng Appl Artif Intell, 2020, 94: 103779 doi: 10.1016/j.engappai.2020.103779
    [16]
    Chen H, Heidari A A, Zhao X H, et al. Advanced orthogonal learning-driven multi-swarm sine cosine optimization: framework and case studies. Expert Syst Appl, 2020, 144: 113113 doi: 10.1016/j.eswa.2019.113113
    [17]
    Chen H L, Wang M J, Zhao X H. A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Appl Math Comput, 2020, 369: 124872
    [18]
    Wang M W, Wu C M, Chen M L, et al. A band selection approach based on Lévy sine cosine algorithm and alternative distribution for hyperspectral image. Int J Remote Sens, 2020, 41(9): 3429 doi: 10.1080/01431161.2019.1706010
    [19]
    王繼超, 李擎, 崔家瑞, 等. 一種改進的人工蜂群算法——粒子蜂群算法. 工程科學學報, 2018, 40(07):871

    Wang J C, Li Q, Cui J R, et al. An improved artificial bee colony algorithm: particle bee colony. Chin J Eng, 2018, 40(07): 871
    [20]
    張超, 李擎, 王偉乾, 等. 基于自適應搜索的免疫粒子群算法. 工程科學學報, 2017, 39(1):125

    Zhang C, Li Q, Wang W Q, et al. Immune particle swarm optimization algorithm based on the adaptive search strategy. Chin J Eng, 2017, 39(1): 125
    [21]
    張超, 李擎, 陳鵬, 等. 一種基于粒子群參數優化的改進蟻群算法及其應用. 北京科技大學學報, 2013, 35(7):955

    Zhang C, Li Q, Chen P, et al. Improved ant colony optimization based on particle swarm optimization and its application. J Univ Sci Technol Beijing, 2013, 35(7): 955
    [22]
    Yao X, Liu Y, Lin G M. Evolutionary programming made faster. IEEE Trans Evol Comput, 1999, 3(2): 82 doi: 10.1109/4235.771163
    [23]
    Eberhart R, Kennedy J. A new optimizer using particle swarm theory // Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, 1995: 39
    [24]
    Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. Global Optim, 1997, 11(4): 341 doi: 10.1023/A:1008202821328
    [25]
    Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Global Optim, 2007, 39(3): 459 doi: 10.1007/s10898-007-9149-x
    [26]
    Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput, 2008, 8(1): 687 doi: 10.1016/j.asoc.2007.05.007
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(2)  / Tables(7)

    Article views (1298) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频