Citation: | LIU Xiao-juan, WANG Lian-guo. A sine cosine algorithm based on differential evolution[J]. Chinese Journal of Engineering, 2020, 42(12): 1674-1684. doi: 10.13374/j.issn2095-9389.2020.07.26.002 |
[1] |
Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst, 2016, 96: 120 doi: 10.1016/j.knosys.2015.12.022
|
[2] |
劉勇, 馬良. 轉換參數非線性遞減的正弦余弦算法. 計算機工程與應用, 2017, 53(2):1 doi: 10.3778/j.issn.1002-8331.1608-0349
Liu Y, Ma L. Sine cosine algorithm with nonlinear decreasing conversion parameter. Comput Eng Appl, 2017, 53(2): 1 doi: 10.3778/j.issn.1002-8331.1608-0349
|
[3] |
徐松金, 龍文. 求解高維優化問題的改進正弦余弦算法. 計算機應用研究, 2018, 35(9):2574 doi: 10.3969/j.issn.1001-3695.2018.09.003
Xu S J, Long W. Improved sine cosine algorithm for solving high-dimensional optimization problems. Appl Res Comput, 2018, 35(9): 2574 doi: 10.3969/j.issn.1001-3695.2018.09.003
|
[4] |
石磊. 一種改進的正弦余弦優化算法[學位論文]. 武漢: 武漢大學, 2018
Shi B. A Modified Sine-Cosine Algorithm for Solving Optimization Problems[Dissertation]. Wuhan: Wuhan University, 2018
|
[5] |
于坤, 焦青亮, 劉子龍, 等. 基于改進正弦余弦算法的光譜特征峰定位方法. 光學學報, 2019, 39(9):403
Yu K, Jiao Q L, Liu Z L, et al. Positioning of characteristic spectral peaks based on improved sine cosine algorithm. Acta Opt Sin, 2019, 39(9): 403
|
[6] |
郭文艷, 王遠, 戴芳, 等. 基于精英混沌搜索策略的交替正余弦算法. 控制與決策, 2019, 34(8):1654
Guo W Y, Wang Y, Dai F, et al. Alternating sine cosine algorithm based on elite chaotic search strategy. Control Decis, 2019, 34(8): 1654
|
[7] |
方旭陽, 武相軍, 游大濤. 具有學習機制的正弦余弦算法. 計算機應用研究, 2020, 37(3):809
Fang X Y, Wu X J, You D T. Sine cosine algorithm with learning mechanism. Appl Res Comput, 2020, 37(3): 809
|
[8] |
徐明, 焦建軍, 龍文. 基于Logistic模型和隨機差分變異的正弦余弦算法. 計算機科學, 2020, 47(2):206 doi: 10.11896/jsjkx.181102197
Xu M, Jiao J J, Long W. Sine cosine algorithm based on Logistic model and stochastic differential mutation. Comput Sci, 2020, 47(2): 206 doi: 10.11896/jsjkx.181102197
|
[9] |
郎春博, 賈鶴鳴, 邢致愷, 等. 基于改進正余弦優化算法的多閾值圖像分割. 計算機應用研究, 2020, 37(4):1215
Lang C B, Jia H M, Xing Z K, et al. Multi-threshold image segmentation based on improved sine cosine optimization algorithm. Appl Res Comput, 2020, 37(4): 1215
|
[10] |
Gupta S, Deep K. Improved sine cosine algorithm with crossover scheme for global optimization. Knowl-Based Syst, 2019, 165: 374 doi: 10.1016/j.knosys.2018.12.008
|
[11] |
Gupta S, Deep K. A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl, 2019, 119: 210 doi: 10.1016/j.eswa.2018.10.050
|
[12] |
Kumar L, Bharti K K. A novel hybrid BPSO-SCA approach for feature selection. Nat Comput, 2019 doi: 10.1007/s11047-019-09769-z
|
[13] |
Guo W Y, Wang Y, Zhao F Q, et al. Riesz fractional derivative Elite-guided sine cosine algorithm. Appl Soft Comput, 2019, 81: 105481 doi: 10.1016/j.asoc.2019.04.044
|
[14] |
Mouhoub Belazzoug, Mohamed Touahria, Farid Nouioua, et al. An improved sine cosine algorithm to select features for text categorization. King Saud University - Computer and Information Sciences, 2020, 32(4): 454 doi: 10.1016/j.jksuci.2019.07.003
|
[15] |
Guo W Y, Wang Y, Dai F, et al. Improved sine cosine algorithm combined with optimal neighborhood and quadratic interpolation strategy. Eng Appl Artif Intell, 2020, 94: 103779 doi: 10.1016/j.engappai.2020.103779
|
[16] |
Chen H, Heidari A A, Zhao X H, et al. Advanced orthogonal learning-driven multi-swarm sine cosine optimization: framework and case studies. Expert Syst Appl, 2020, 144: 113113 doi: 10.1016/j.eswa.2019.113113
|
[17] |
Chen H L, Wang M J, Zhao X H. A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Appl Math Comput, 2020, 369: 124872
|
[18] |
Wang M W, Wu C M, Chen M L, et al. A band selection approach based on Lévy sine cosine algorithm and alternative distribution for hyperspectral image. Int J Remote Sens, 2020, 41(9): 3429 doi: 10.1080/01431161.2019.1706010
|
[19] |
王繼超, 李擎, 崔家瑞, 等. 一種改進的人工蜂群算法——粒子蜂群算法. 工程科學學報, 2018, 40(07):871
Wang J C, Li Q, Cui J R, et al. An improved artificial bee colony algorithm: particle bee colony. Chin J Eng, 2018, 40(07): 871
|
[20] |
張超, 李擎, 王偉乾, 等. 基于自適應搜索的免疫粒子群算法. 工程科學學報, 2017, 39(1):125
Zhang C, Li Q, Wang W Q, et al. Immune particle swarm optimization algorithm based on the adaptive search strategy. Chin J Eng, 2017, 39(1): 125
|
[21] |
張超, 李擎, 陳鵬, 等. 一種基于粒子群參數優化的改進蟻群算法及其應用. 北京科技大學學報, 2013, 35(7):955
Zhang C, Li Q, Chen P, et al. Improved ant colony optimization based on particle swarm optimization and its application. J Univ Sci Technol Beijing, 2013, 35(7): 955
|
[22] |
Yao X, Liu Y, Lin G M. Evolutionary programming made faster. IEEE Trans Evol Comput, 1999, 3(2): 82 doi: 10.1109/4235.771163
|
[23] |
Eberhart R, Kennedy J. A new optimizer using particle swarm theory // Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, 1995: 39
|
[24] |
Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. Global Optim, 1997, 11(4): 341 doi: 10.1023/A:1008202821328
|
[25] |
Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Global Optim, 2007, 39(3): 459 doi: 10.1007/s10898-007-9149-x
|
[26] |
Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput, 2008, 8(1): 687 doi: 10.1016/j.asoc.2007.05.007
|