Citation: | LIU Xing, ZHAO Jian-yin, ZHU Min, ZHANG Wei. Research on an improved lp-RWMKE-ELM fault diagnosis model[J]. Chinese Journal of Engineering, 2022, 44(1): 82-94. doi: 10.13374/j.issn2095-9389.2020.07.09.001 |
[1] |
Ao Y C, Shi Y B, Zhang W, et al. An approximate calculation of ratio of normal variables and its application in analog circuit fault diagnosis. J Electron Test, 2013, 29(4): 555 doi: 10.1007/s10836-013-5382-z
|
[2] |
Han H, Wang H J, Tian S L, et al. A new analog circuit fault diagnosis method based on improved mahalanobis distance. J Electron Test, 2013, 29(1): 95 doi: 10.1007/s10836-012-5342-z
|
[3] |
Tang X F, Xu A Q. Practical analog circuit diagnosis based on fault features with minimum ambiguities. J Electron Test, 2016, 32(1): 83 doi: 10.1007/s10836-015-5561-1
|
[4] |
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feed forward neural networks // Proceedings of 2004 IEEE International Joint Conference on Neural Networks. Budapest, 2004: 985
|
[5] |
Qin H Y, Zhou H P, Cao J W. Imbalanced learning algorithm based intelligent abnormal electricity consumption detection. Neurocomputing, 2020, 402: 112 doi: 10.1016/j.neucom.2020.03.085
|
[6] |
He H B, Garcia E A. Learning from imbalanced data. IEEE Trans Knowl Data Eng, 2009, 21(9): 1263 doi: 10.1109/TKDE.2008.239
|
[7] |
Akbani R, Kwek S, Japkowicz N. Applying support vector machines to imbalanced datasets // Proceedings of the 15th European Conference on Machine Learning. Pisa, 2004: 39
|
[8] |
Zheng L K, Xiang Y, Sheng C X. Optimization-based improved kernel extreme learning machine for rolling bearing fault diagnosis. J Braz Soc Mech Sci Eng, 2019, 41: 619
|
[9] |
Deng W Y, Zheng Q H, Chen L. Regularized extreme learning machine // IEEE Symposium on Computational Intelligence and Data Mining (CIDM 09). Nashville, 2009: 389
|
[10] |
Zong W W, Huang G B, Chen Y Q. Weighted extreme learning machine for imbalance learning. Neurocomputing, 2013, 101: 229 doi: 10.1016/j.neucom.2012.08.010
|
[11] |
Mirza B, Lin Z P, Toh K A. Weighted online sequential extreme learning machine for class imbalance learning. Neural Process Lett, 2013, 38(3): 465 doi: 10.1007/s11063-013-9286-9
|
[12] |
Mao W T, Wang J W, Xue Z N. An ELM-based model with sparse-weighting strategy for sequential data imbalance problem. Int J Mach Learn Cybern, 2017, 8(4): 1333 doi: 10.1007/s13042-016-0509-z
|
[13] |
Yu H Y, Sun X Y, Yan X Z. Sequential prediction for imbalanced data stream via weighted OS-ELM and dynamic GAN. Intell Data Anal, 2019, 23(6): 1191 doi: 10.3233/IDA-184377
|
[14] |
Zhang Y, Liu B, Cai J, et al. Ensemble weighted extreme learning machine for imbalanced data classification based on differential evolution. Neural Comput Appl, 2017, 28: 259 doi: 10.1007/s00521-016-2342-4
|
[15] |
張偉, 許愛強. 集成散度的MKL模型在模擬電路診斷中的應用. 計算機工程與應用, 2018, 54(9):5 doi: 10.3778/j.issn.1002-8331.1712-0425
Zhang W, Xu A Q. Application of MKL model incorporated within-class scatter in analog circuit diagnosis. Comput Eng Appl, 2018, 54(9): 5 doi: 10.3778/j.issn.1002-8331.1712-0425
|
[16] |
Ergul U, Bilgin G. MCK-ELM: multiple composite kernel extreme learning machine for hyper spectral images. Neural Comput Appl, 2020, 32(11): 6809 doi: 10.1007/s00521-019-04044-9
|
[17] |
Yu H Y, Sun X Y, Wang J. Ensemble OS-ELM based on combination weight for data stream classification. Appl Intell, 2019, 49(6): 2382 doi: 10.1007/s10489-018-01403-2
|
[18] |
Zhou Z H, Liu X Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans Knowl Data Eng, 2006, 18(1): 63 doi: 10.1109/TKDE.2006.17
|
[19] |
Raghuwanshi B S, Shukla S. Class-specific cost-sensitive boosting weighted ELM for class imbalance learning. Memetic Comput, 2019, 11(3): 263 doi: 10.1007/s12293-018-0267-4
|
[20] |
Mirza B, Lin Z P, Liu N. Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift. Neurocomputing, 2015, 149: 316 doi: 10.1016/j.neucom.2014.03.075
|
[21] |
Li K, Kong X F, Lu Z, et al. Boosting weighted ELM for unbalanced learning. Neurocomputing, 2014, 128: 15 doi: 10.1016/j.neucom.2013.05.051
|
[22] |
Huang G B, Zhou H M, Ding X J, et al. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern, 2012, 42(2): 513 doi: 10.1109/TSMCB.2011.2168604
|
[23] |
Liu X W, Wang L, Huang G B, et al. Multiple kernel extreme learning machine. Neurocomputing, 2015, 149: 253 doi: 10.1016/j.neucom.2013.09.072
|
[24] |
Vong C M, Ip W F, Wong P K, et al. Predicting minority class for suspended particulate matters level by extreme learning machine. Neurocomputing, 2014, 128: 136 doi: 10.1016/j.neucom.2012.11.056
|
[25] |
Zhang P B, Yang Z X. A novel AdaBoost framework with robust threshold and structural optimization. IEEE Trans Cybern, 2018, 48(1): 64 doi: 10.1109/TCYB.2016.2623900
|
[26] |
Phoungphol P, Zhang Y Q, Zhao Y C. Robust multiclass classification for learning from imbalanced biomedical data. Tsinghua Sci Technol, 2012, 17(6): 619 doi: 10.1109/TST.2012.6374363
|