<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
WANG Lan-yun, XIE Hui-long, LU Xiao-ran, XU Yong-liang, WANG Yan, LI Yao, WEI Jian-ping. Research progress of promoters and promoting mechanisms for hydrate-based gas separation[J]. Chinese Journal of Engineering, 2021, 43(1): 33-46. doi: 10.13374/j.issn2095-9389.2020.07.06.004
Citation: WANG Lan-yun, XIE Hui-long, LU Xiao-ran, XU Yong-liang, WANG Yan, LI Yao, WEI Jian-ping. Research progress of promoters and promoting mechanisms for hydrate-based gas separation[J]. Chinese Journal of Engineering, 2021, 43(1): 33-46. doi: 10.13374/j.issn2095-9389.2020.07.06.004

Research progress of promoters and promoting mechanisms for hydrate-based gas separation

doi: 10.13374/j.issn2095-9389.2020.07.06.004
More Information
  • Corresponding author: E-mail: xylcumt@hpu.edu.cn
  • Received Date: 2020-07-06
  • Publish Date: 2021-01-25
  • Unconventional natural gas is a type of high-quality clean energy, which often contains some gases as impurities that cause reductions in its combustion heat value and utilization efficiency. Therefore, developing gas separation technologies to remove or separate these impurity gases and concentrate methane content is necessary. As a newly emerging gas separation technology, hydrate-based gas separation technology currently requires exploration on ways to greatly increase hydration rate to promote its industrial application. Screening green and environmentally-friendly promoters has become a research hotspot in recent decades. Amino acids, starch, and other biological substances have attracted much attention owing to their wide accessibility and environmental protection. Ionic liquids (ILs), which are a new type of lowly volatile and recyclable solvents, exhibit excellent performance in promoting gas hydrates formation and growth. Furthermore, ILs exhibit adjustable and controllable structures, which make them potential promoters in hydrate-based gas separation. Presently, no universally recognized theory on hydrate formation mechanism exists for various promoters. In this paper, different promotion mechanisms of gas hydration were described and discussed in detail, which included surface tension reduction theory, critical micelle theory, capillary effect theory, template effect theory, and surface hydrophobic effect theory. Both traditional promoters (e.g., THF, CP, and SDS) and bio-environmental promoters (e.g., amino acids and starch) were reviewed in the terms of gas hydration equilibrium condition, dynamic regularity, and hydrates-acceleration mechanisms. Particularly, the application of ILs, which are a type of semi-clathrate promoter, in gas hydration was elaborated. Study on the structural properties of promoters, their aggregation morphology in water, and intermolecular interactions between ILs, gases, and water is necessary for the establishment of a promoter-screening system for various gas hydrations.

     

  • loading
  • [1]
    Li Y, Zhou D H, Wang W H, et al. Development of unconventional gas and technologies adopted in China. Energy Geosci, 2020, 1(1-2): 55
    [2]
    臧小亞, 梁德青, 吳能友. 基于水合物技術分離天然氣/沼氣中CO2的研究進展. 現代化工, 2015, 35(2):13

    Zang X Y, Liang D Q, Wu N Y. Research progress in hydrate-based carbon dioxide separation from natural gas/biogas. Mod Chem Ind, 2015, 35(2): 13
    [3]
    Gu H M, Song G H, Xiao J, et al. Thermodynamic analysis of the biomass-to-synthetic natural gas using chemical looping technology with CaO sorbent. Energy Fuels, 2013, 27(8): 4695
    [4]
    Chen Q, Liu T B. Biogas system in rural China: Upgrading from decentralized to centralized? Renewable Sustainable Energy Rev, 2017, 78: 933
    [5]
    袁亮. 我國煤層氣開發利用的科學思考與對策. 科技導報, 2011, 29(22):3

    Yuan L. Scientific thinking and countermeasures of coalbed methane development and utilization in China. Sci Technol Rev, 2011, 29(22): 3
    [6]
    曲思建, 董衛國, 李雪飛, 等. 低濃度煤層氣脫氧濃縮工藝技術開發與應用. 煤炭學報, 2014, 39(8):1539

    Qu S J, Dong W G, Li X F, et al. Research and application of the low concentrated coal bed methane upgrading technique. J China Coal Soc, 2014, 39(8): 1539
    [7]
    劉見中, 孫海濤, 雷毅, 等. 煤礦區煤層氣開發利用新技術現狀及發展趨勢. 煤炭學報, 2020, 45(1):258

    Liu J Z, Sun H T, Lei Y, et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area. J China Coal Soc, 2020, 45(1): 258
    [8]
    李永玲, 劉應書, 楊雄, 等. 等比例變壓吸附法富集低濃度煤層氣的安全性分析. 煤炭學報, 2012, 37(5):804

    Li Y L, Liu Y S, Yang X, et al. Safety analysis on low concentration coal bed methane enrichment process by proportion pressure swing adsorption. J China Coal Soc, 2012, 37(5): 804
    [9]
    Al-Rabiah A A, Ajbar A M, Soliman M A, et al. Modeling of nitrogen separation from natural gas through nanoporous carbon membranes. J Nat Gas Sci Eng, 2015, 26: 1278
    [10]
    Hadri N E, Quang D V, Goetheer E L V, et al. Aqueous amine solution characterization for post-combustion CO2 capture process. Appl Energy, 2017, 185: 1433
    [11]
    陳金華, 肖露, 令狐磊. 低濃度煤層氣深冷液化工藝研究. 煤炭科學技術, 2016, 44(6):134

    Chen J H, Xiao L, Ling H L. Study on cryogenic liquefaction technique of low concentration coalbed methane. Coal Sci Technol, 2016, 44(6): 134
    [12]
    李雯, 王志, 李潘源, 等. 用于甲烷-氮氣體系分離的膜技術研究進展. 化工學報, 2016, 67(2):404

    Li W, Wang Z, Li P Y, et al. Progress in membrane technology for CH4-N2 separation. CIESC J, 2016, 67(2): 404
    [13]
    陳光進, 孫長宇, 馬慶蘭. 氣體水合物科學與技術. 北京: 化學工業出版社, 2008

    Chen G J, Sun C Y, Ma Q L. Gas Hydrate Science and Technology. Beijing: Chemical Industry Press, 2008
    [14]
    Sloan E D. Fundamental principles and applications of natural gas hydrates. Nature, 2003, 426: 353
    [15]
    Sloan E D, Koh C A, Koh C. Clathrate Hydrates of Natural Gases. 3rd Ed. Florida: CRC Press, 2007
    [16]
    Li A R, Jiang L L, Tang S Y. An experimental study on carbon dioxide hydrate formation using a gas-inducing agitated reactor. Energy, 2017, 134: 629
    [17]
    Park S S, Kim N J. Study on methane hydrate formation using ultrasonic waves. J Ind Eng Chem, 2013, 19(5): 1668
    [18]
    Wang X L, Dennis M. Charging performance of a CO2 semi-clathrate hydrate based PCM in a lab-scale cold storage system. Appl Therm Eng, 2017, 126: 762
    [19]
    Adisasmito S, Frank R J, Sloan E D. Hydrates of carbon dioxide and methane mixtures. J Chem Eng Data, 1991, 36(1): 68
    [20]
    Mohammadi A H, Tohidi, B, Burgass R W. Equilibrium data and thermodynamic modeling of nitrogen, oxygen, and air clathrate hydrates. J Chem Eng Data, 2003, 48(3): 612
    [21]
    Ward Z T, Deering C E, Marriott R A, et al. Phase equilibrium data and model comparisons for H2S hydrates. J Chem Eng Data, 2015, 60(2): 403
    [22]
    Dicharry C, Duchateau C, Asbai H, et al. Carbon dioxide gas hydrate crystallization in porous silica gel particles partially saturated with a surfactant solution. Chem Eng Sci, 2013, 98: 88
    [23]
    李玉星, 朱超, 王武昌. 表面活性劑促進CO2水合物生成的實驗及動力學模型. 石油化工, 2012, 41(6):699 doi: 10.3969/j.issn.1000-8144.2012.06.015

    Li Y X, Zhu C, Wang W C. Promoting effects of surfactants on carbon dioxide hydrate formation and the kinetics. Petrochem Technol, 2012, 41(6): 699 doi: 10.3969/j.issn.1000-8144.2012.06.015
    [24]
    張慶東, 李玉星, 王武昌. 化學添加劑對水合物生成和儲氣的影響. 石油與天然氣化工, 2014, 43(2):146 doi: 10.3969/j.issn.1007-3426.2014.02.008

    Zhang Q D, Li Y X, Wang W C. Influence of chemical additives on hydrate formation and gas storage. Chem Eng Oil Gas, 2014, 43(2): 146 doi: 10.3969/j.issn.1007-3426.2014.02.008
    [25]
    張保勇, 吳強, 王永敬. 表面活性劑對氣體水合物生成誘導時間的作用機理. 吉林大學學報(工學版), 2007, 37(1):239

    Zhang B Y, Wu Q, Wang Y J. Reaction mechanism between surfactant and induction of gas hydrate formation. J Jilin Univ Eng Technol Ed, 2007, 37(1): 239
    [26]
    Zhong Y, Rogers R E. Surfactant effects on gas hydrate formation. Chem Eng Sci, 2000, 55(19): 4175
    [27]
    Wang F, Jia Z Z, Luo S J, et al. Effects of different anionic surfactants on methane hydrate formation. Chem Eng Sci, 2015, 137: 896
    [28]
    Veluswamy H P, Chen J Y, Linga P. Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates. Chem Eng Sci, 2015, 126: 488
    [29]
    Profio P D, Arca S, Germani R, et al. Surfactant promoting effects on clathrate hydrate formation: Are micelles really involved? Chem Eng Sci, 2005, 60(15): 4141
    [30]
    Gayet P, Dicharry C, Marion G, et al. Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter. Chem Eng Sci, 2005, 60(21): 5751
    [31]
    Lo C, Zhang J S, Somasundaran P, et al. Investigations of surfactant effects on gas hydrate formation via infrared spectroscopy. J Colloid Interface Sci, 2012, 376(1): 173
    [32]
    孟漢林, 郭榮波, 王飛, 等. 不同表面活性劑對甲烷水合物生成的影響. 可再生能源, 2017, 35(3):329

    Meng H L, Guo R B, Wang F, et al. Effect of different surfactants on methane hydrate formation. Renewable Energy Resour, 2017, 35(3): 329
    [33]
    Yoslim J, Linga P, Englezos P. Enhanced growth of methane-propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants. J Cryst Growth, 2010, 313(1): 68
    [34]
    Zhang J S, Lee S, Lee J W. Kinetics of methane hydrate formation from SDS solution. Ind Eng Chem Res, 2007, 46(19): 6353
    [35]
    Molokitina N S, Nesterov A N, Podenko L S, et al. Carbon dioxide hydrate formation with SDS: Further insights into mechanism of gas hydrate growth in the presence of surfactant. Fuel, 2019, 235: 1400
    [36]
    Wang Y H, Lang X M, Fan S S. Accelerated nucleation of tetrahydrofuran (THF) hydrate in presence of ZIF-61. J Nat Gas Chem, 2012, 21(3): 299
    [37]
    Long F, Fan S S, Wang Y H, et al. Promoting effect of super absorbent polymer on hydrate formation. J Nat Gas Chem, 2010, 19(3): 251
    [38]
    呂秋楠. 多元水合物熱力學及生成動力學實驗研究[學位論文]. 大連: 大連理工大學, 2018

    Lü Q N. Experimental Study on Thermodynamics and Formation Kinetics of Multicomponent Hydrate[Dissertation]. Dalian: Dalian University of Technology, 2018
    [39]
    Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature, 2005, 437(7059): 640
    [40]
    Kauzmann W. Some factors in the interpretation of protein denaturation. Adv Protein Chem, 1959, 14: 1
    [41]
    Nguyen N N, Nguyen A V. Hydrophobic effect on gas hydrate formation in the presence of additives. Energy Fuels, 2017, 31(10): 10311
    [42]
    Nguyen N N, Nguyen A V. The dual effect of sodium halides on the formation of methane gas hydrate. Fuel, 2015, 156: 87
    [43]
    Farhang F, Nguyen A V, Hampton M A. Influence of sodium halides on the kinetics of CO2 hydrate formation. Energy Fuels, 2014, 28(2): 1220
    [44]
    Sowa B, Zhang X H, Hartley P G, et al. Formation of ice, tetrahydrofuran hydrate, and methane/propane mixed gas hydrates in strong monovalent salt solutions. Energy Fuels, 2014, 28(11): 6877
    [45]
    Wang M, Sun Z G, Qiu X H, et al. Hydrate dissociation equilibrium conditions for carbon dioxide + tetrahydrofuran. J Chem Eng Data, 2017, 62(2): 812
    [46]
    Wang M, Sun Z G, Li C H, et al. Equilibrium hydrate dissociation conditions of CO2 + HCFC141b or cyclopentane. J Chem Eng Data, 2016, 61(9): 3250
    [47]
    丁家祥, 史伶俐, 申小冬, 等. SDS對甲烷水合物生成動力學和微觀結構的影響. 化工學報, 2017, 68(12):4802

    Ding J X, Shi L L, Shen X D, et al. SDS effect on formation kinetics and microstructure of methane hydrate. CIESC J, 2017, 68(12): 4802
    [48]
    趙建忠, 趙陽升, 石定賢. THF溶液水合物技術提純含氧煤層氣的實驗. 煤炭學報, 2008, 33(12):1419 doi: 10.3321/j.issn:0253-9993.2008.12.018

    Zhao J Z, Zhao Y S, Shi D X. Experiment on methane concentration from oxygen-containing coal bed gas by THF solution hydrate formation. J China Coal Soc, 2008, 33(12): 1419 doi: 10.3321/j.issn:0253-9993.2008.12.018
    [49]
    楊亮. 甲烷水合物生成的靜態強化技術[學位論文]. 廣州: 華南理工大學, 2013

    Yang L. Static Enhancement Technology of Methane Hydrate Formation[Dissertation]. Guangzhou: South China University of Technology, 2013
    [50]
    Zhang Q, Wu Q, Zhang H, et al. Effect of montmorillonite on hydrate-based methane separation from mine gas. J Central South Univ, 2018, 25(1): 38
    [51]
    趙小晨. 介觀尺度下煤層氣水合物生成特性實驗研究[學位論文]. 太原: 太原理工大學, 2019

    Zhao X C. Experimental Study on Formation Characteristics of Coalbed Methane Hydrate at Mesoscopic Scale[Dissertation]. Taiyuan: Taiyuan University of Technology, 2019
    [52]
    Seo Y T, Kang S P, Lee H. Experimental determination and thermodynamic modeling of methane and nitrogen hydrates in the presence of THF, propylene oxide, 1, 4-dioxane and acetone. Fluid Phase Equilib, 2001, 189(1-2): 99
    [53]
    Sizikov A A, Manakov A Y, Aladko E Y. Pressure dependence of gas hydrate formation in triple systems water – 2-Propanol–methane and water-2-Propanol–hydrogen. Fluid Phase Equilib, 2016, 425: 351
    [54]
    Susilo R, Ripmeester J A, Englezos P. Methane conversion rate into structure H hydrate crystals from ice. AIChE J, 2007, 53(9): 2451
    [55]
    Mazraeno M S, Varaminian F, Vafaie-Sefti M. Experimental and modeling investigation on structure H hydrate formation kinetics. Energy Convers Manage, 2013, 76: 1
    [56]
    陳彬, 辛峰, 宋小飛, 等. 相變漿液中甲烷水合物的生成過程強化. 化工學報, 2016, 67(8):3202

    Chen B, Xin F, Song X F, et al. Enhancement of methane hydrate formation process in phase change slurry. CIESC J, 2016, 67(8): 3202
    [57]
    朱明貴, 孫志高, 楊明明, 等. 有機相變材料促進HCFC-141b水合物生成實驗. 化工進展, 2017, 36(4):1265

    Zhu M G, Sun Z G, Yang M M, et al. Experimental study on promoting HCFC-141b hydrate formation with organic phase change material. Chem Ind Eng Prog, 2017, 36(4): 1265
    [58]
    Wang W X, Zeng P Y, Long X Y, et al. Methane storage in tea clathrates. Chem Commun, 2014, 50(10): 1244
    [59]
    Chen Y F, Yang C H, Chang M S, et al. Foam properties and detergent abilities of the saponins from camellia oleifera. Int J Mol Sci, 2010, 11(11): 4417
    [60]
    Veluswamy H P, Kumar A, Kumar R, et al. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Appl Energy, 2017, 188: 190
    [61]
    Farhadian A, Varfolomeev M A, Abdelhay Z, et al. Accelerated methane hydrate formation by ethylene diamine tetraacetamide as an efficient promoter for methane storage without foam formation. Ind Eng Chem Res, 2019, 58(19): 7752
    [62]
    Liu Y, Chen B Y, Chen Y L, et al. Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage. Energy Technol, 2015, 3(8): 815
    [63]
    Veluswamy H P, Hong Q W, Linga P. Morphology study of methane hydrate formation and dissociation in the presence of amino acid. Cryst Growth Des, 2016, 16(10): 5932
    [64]
    Bhattacharjee G, Choudhary N, Kumar A, et al. Effect of the amino acid l-histidine on methane hydrate growth kinetics. J Nat Gas Sci Eng, 2016, 35: 1453
    [65]
    Veluswamy H P, Lee P Y, Premasinghe K, et al. Effect of biofriendly amino acids on the kinetics of methane hydrate formation and dissociation. Ind Eng Chem Res, 2017, 56(21): 6145
    [66]
    Sa J H, Kwak G H, Lee B R, et al. Abnormal incorporation of amino acids into the gas hydrate crystal lattice. Phys Chem Chem Phys, 2014, 16(48): 26730
    [67]
    Zhang Z E, Li Y F, Zhang W X, et al. Effectiveness of amino acid salt solutions in capturing CO2: A review. Renewable Sustainable Energy Rev, 2018, 98: 179
    [68]
    Fakharian H, Ganji H, Far A N, et al. Potato starch as methane hydrate promoter. Fuel, 2012, 94: 356
    [69]
    Ganji H, Manteghian M, Mofrad H R. Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity. Fuel Process Technol, 2007, 88(9): 891
    [70]
    Babakhani S M, Alamdari A. Effect of maize starch on methane hydrate formation/dissociation rates and stability. J Nat Gas Sci Eng, 2015, 26: 1
    [71]
    Lin Y J, Veluswamy H P, Linga P. Effect of eco-friendly cyclodextrin on the kinetics of mixed methane–tetrahydrofuran hydrate formation. Ind Eng Chem Res, 2018, 57(17): 5944
    [72]
    Mohammad-Taheri M, Moghaddam A Z, Nazari K, et al. Methane hydrate stability in the presence of water-soluble hydroxyalkyl cellulose. J Nat Gas Chem, 2012, 21(2): 119
    [73]
    Al-Adel S, Dick J A G, El-Ghafari R, et al. The effect of biological and polymeric inhibitors on methane gas hydrate growth kinetics. Fluid Phase Equilib, 2008, 267(1): 92
    [74]
    Kumar A, Sakpal T, Kumar R. Influence of low-dosage hydrate inhibitors on methane clathrate hydrate formation and dissociation kinetics. Energy Technol, 2015, 3(7): 717
    [75]
    Karaaslan U, Parlaktuna M. Promotion effect of polymers and surfactants on hydrate formation rate. Energy Fuels, 2002, 16(6): 1413
    [76]
    Kiran B S, Prasad P S R. Storage of methane gas in the form of clathrates in the presence of natural bioadditives. ACS Omega, 2018, 3(12): 18984
    [77]
    Lee J D, Wu H J, Englezos P. Cationic starches as gas hydrate kinetic inhibitors. Chem Eng Sci, 2007, 62(23): 6548
    [78]
    Sa J H, Kwak G H, Lee B R, et al. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation. Sci Rep, 2013, 3: 2428
    [79]
    Sa J H, Kwak G H, Han K, et al. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids. Sci Rep, 2016, 6: 31582
    [80]
    Fowler D L, Loebenstein W V, Pall D B, et al. Some unusual hydrates of quaternary ammonium salts. J Am Chem Soc, 1940, 62(5): 1140
    [81]
    Wang W X, Carter B O, Bray C L, et al. Reversible methane storage in a polymer-supported semi-clathrate hydrate at ambient temperature and pressure. Chem Mater, 2009, 21(16): 3810
    [82]
    Long X J, Wang Y H, Lang X M, et al. Hydrate equilibrium measurements for CH4, CO2, and CH4 + CO2 in the presence of tetra-n-butyl ammonium bromide. J Chem Eng Data, 2016, 61(11): 3897
    [83]
    Makino T, Yamamoto T, Nagata K, et al. Thermodynamic stabilities of tetra-n-butyl ammonium chloride + H2, N2, CH4, CO2, or C2H6 semiclathrate hydrate systems. J Chem Eng Data, 2010, 55(2): 839
    [84]
    Mohammadi A, Manteghian M, Mohammadi A H. Dissociation data of semiclathrate hydrates for the systems of tetra-n-butylammonium fluoride (TBAF) + methane + water, TBAF + carbon dioxide + water, and TBAF + nitrogen +water. J Chem Eng Data, 2013, 58(12): 3545
    [85]
    Hughes T J, Marsh K N. Methane semi-clathrate hydrate phase equilibria with tetraisopentylammonium fluoride. J Chem Eng Data, 2011, 56(12): 4597
    [86]
    Villano L D, Kelland M A. An investigation into the kinetic hydrate inhibitor properties of two imidazolium-based ionic liquids on Structure Ⅱ gas hydrate. Chem Eng Sci, 2010, 65(19): 5366
    [87]
    孫志高, 焦麗君, 趙之貴, 等. 含離子液體體系甲烷水合物形成特性實驗研究. 科學技術與工程, 2013, 13(15):4361 doi: 10.3969/j.issn.1671-1815.2013.15.041

    Sun Z G, Jiao L J, Zhao Z G, et al. Experimental study on the methane formation conditions with the presence of ionic liquids. Sci Technol Eng, 2013, 13(15): 4361 doi: 10.3969/j.issn.1671-1815.2013.15.041
    [88]
    Cha J H, Ha C, Han S, et al. Experimental measurement of phase equilibrium of hydrate in water plus ionic liquid+CH4 system. J Chem Eng Data, 2016, 61(1): 543
    [89]
    Khan M S, Bavoh C B, Partoon B, et al. Thermodynamic effect of ammonium based ionic liquids on CO2 hydrates phase boundary. J Mol Liquids, 2017, 238: 533
    [90]
    Mohammadi A H, Eslamimanesh A, Belandria V, et al. Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2+Tetra-n-butylammonium bromide aqueous solution. J Chem Eng Data, 2011, 56(10): 3855
    [91]
    Ilani-Kashkouli P, Mohammadi A H, Naidoo P, et al. Hydrate phase equilibria for CO2, CH4, or N2 + tetrabutylphosphonium bromide (TBPB) aqueous solution. Fluid Phase Equilib, 2016, 411: 88
    [92]
    Shi L L, Liang D Q, Li D L. Phase equilibrium data of tetrabutylphosphonium bromide plus carbon dioxide or nitrogen semiclathrate hydrates. J Chem Eng Data, 2013, 58(7): 2125
    [93]
    Li X S, Zhan H, Xu C G, et al. Effects of tetrabutyl-(ammonium/phosphonium) salts on clathrate hydrate capture of CO2 from simulated flue gas. Energy Fuels, 2012, 26(4): 2518
    [94]
    Suginaka T, Sakamoto H, Iino K, et al. Phase equilibrium for ionic semiclathrate hydrate formed with CO2, CH4, or N2 plus tetrabutylphosphonium bromide. Fluid Phase Equilib, 2013, 344: 108
    [95]
    Mohammadi A. Pakzad M, Mohammadi A H, et al. Kinetics of (TBAF+CO2) semi-clathrate hydrate formation in the presence and absence of SDS. Petrol Sci, 2018, 15(2): 375
    [96]
    Duc N H, Chauvy F, Herri J M. CO2 capture by hydrate crystallization-A potential solution for gas emission of steelmaking industry. Energy Convers Manage, 2007, 48(4): 1313
    [97]
    李松, 畢崟, 楊翠蓮, 等. 離子液體水溶液-氣體水合物對CO2的雙捕獲工藝. 過程工程學報, 2014, 14(3):409

    Li S, Bi Y, Yang C L, et al. Double-capture process of CO2 by gas hydrate and aqueous solution of ionic liquid. Chin J Process Eng, 2014, 14(3): 409
    [98]
    Fan S S, Li S F, Wang J Q, et al. Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates. Energy Fuels, 2009, 23(8): 4202
    [99]
    Fan S S, Long X J, Lang X M, et al. CO2 capture from CH4/CO2 mixture gas with tetra-n-butylammonium bromide semi-clathrate hydrate through a pressure recovery method. Energy Fuels, 2016, 30(10): 8529
    [100]
    Luo Y, Li X X, Guo G J, et al. Equilibrium conditions of binary gas mixture CH4 + H2 in semiclathrate hydrates of tetra-n-butyl ammonium bromide. J Chem Eng Data, 2018, 63(10): 3975
    [101]
    Horii S, Ohmura R. Continuous separation of CO2 from a H2 +CO2 gas mixture using clathrate hydrate. Appl Energy, 2018, 225: 78
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)

    Article views (1783) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频