<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
GONG Zhi-hui, DAI Hui-xin, LU Meng-yu, WU Li-wei, ZHAO Ke-ke. Research progress in the electrochemical behavior of pyrite during grinding and flotation[J]. Chinese Journal of Engineering, 2021, 43(1): 58-66. doi: 10.13374/j.issn2095-9389.2020.06.29.001
Citation: GONG Zhi-hui, DAI Hui-xin, LU Meng-yu, WU Li-wei, ZHAO Ke-ke. Research progress in the electrochemical behavior of pyrite during grinding and flotation[J]. Chinese Journal of Engineering, 2021, 43(1): 58-66. doi: 10.13374/j.issn2095-9389.2020.06.29.001

Research progress in the electrochemical behavior of pyrite during grinding and flotation

doi: 10.13374/j.issn2095-9389.2020.06.29.001
More Information
  • Corresponding author: E-mail: dhx6688@sina.cn
  • Received Date: 2020-06-29
  • Publish Date: 2021-01-25
  • Metal sulfides are highly desirable owing to their semiconductor properties promoting electrochemical reactions for sulfide flotation. As the most common sulfide mineral, pyrite is found in coal and can contain a small amount of gold. The potential of electrochemical reactions for the beneficiation of pyrite makes it necessary to study its electrochemical behavior. The present work focuses on the electrochemical behavior and working mechanisms of pyrite in mineral processing. The effects of the structural characteristics of pyrite, oxidation in solution, the presence of metal ions, and inhibitors on the electrochemical behavior of pyrite were discussed emphatically. The effects of galvanic interaction and grinding medium shape, material, and atmosphere on the electrochemistry of pyrite in grinding were also discussed. It has been shown that the different crystal structures and semiconductor properties of pyrite can greatly influence the oxidation of its surface, which indirectly affects its floatability. Moreover, moderate oxidation conditions are beneficial to the collector-free flotation of pyrite, whereas strong reduction or oxidation potentials inhibit its flotation. It has also been shown that increase in potential and iron oxide on the pyrite surface lead to the decrease in the concentration of copper (Cu+) ions, thereby adversely affecting the activation of pyrite by copper. Furthermore, inhibitors can directly participate in the redox reaction between the collector and pyrite, thus inhibiting the flotation of pyrite. Different grinding media and atmosphere conditions also affect the electrochemical behavior of pyrite.

     

  • loading
  • [1]
    Liu L, Mavrogenes J, Holden P, et al. Quadruple sulfur isotopic fractionation during pyrite desulfidation to pyrrhotite. Geochim Cosmochim Acta, 2020, 273: 354 doi: 10.1016/j.gca.2020.01.024
    [2]
    Xian H Y, He H P, Zhu J X, et al. Crystal habit-directed gold deposition on pyrite: Surface chemical interpretation of the pyrite morphology indicative of gold enrichment. Geochim Cosmochim Acta, 2019, 264: 191 doi: 10.1016/j.gca.2019.08.011
    [3]
    Santander M, Valderrama L. Recovery of pyrite from copper tailings by flotation. J Mater Res Technol, 2019, 8(5): 4312 doi: 10.1016/j.jmrt.2019.07.041
    [4]
    Mikhlin Y, Tomashevich Y, Vorobyev S, et al. Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides. Appl Surf Sci, 2016, 387: 796 doi: 10.1016/j.apsusc.2016.06.190
    [5]
    Bulut G, Yenial U, Emiroglu E, et al. Arsenic removal from aqueous solution using pyrite. J Clean Prod, 2014, 84: 526 doi: 10.1016/j.jclepro.2013.08.018
    [6]
    Chernyshova I V. Anodic oxidation of galena (PbS) studied FTIR-spectroelectrochemically. J Phys Chem B, 2001, 105(34): 8178 doi: 10.1021/jp0110253
    [7]
    Grano S, Ralston J, Smart R S C. Influence of electrochemical environment on the flotation behaviour of Mt. Isa copper and lead-zinc ore. Int J Miner Process, 1990, 30(1-2): 69
    [8]
    Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003
    [9]
    Nicol M, Zhang S C, Tjandrawan V. The electrochemistry of pyrite in chloride solutions. Hydrometallurgy, 2018, 178: 116 doi: 10.1016/j.hydromet.2018.04.013
    [10]
    Majuste D, Ciminelli V S T, Osseo-Asare K, et al. Quantitative assessment of the effect of pyrite inclusions on chalcopyrite electrochemistry under oxidizing conditions. Hydrometallurgy, 2012, 113-114: 167 doi: 10.1016/j.hydromet.2011.12.020
    [11]
    Nicol M J, Miki H, Zhang S C, et al. The effects of sulphate ions and temperature on the leaching of pyrite. 1. Electrochemistry. Hydrometallurgy, 2013, 133: 188 doi: 10.1016/j.hydromet.2013.01.010
    [12]
    Qi X, Li X, Liang Y N, et al. Surface structure-dependent hydrophobicity/oleophilicity of pyrite and its influence on coal flotation. J Ind Eng Chem, 2020, 87: 136 doi: 10.1016/j.jiec.2020.03.024
    [13]
    何宏平, 鮮海洋, 朱建喜, 等. 從礦物粉晶表面反應性到礦物晶面反應性——以黃鐵礦氧化行為的晶面差異性為例. 巖石學報, 2019, 35(1):129 doi: 10.18654/1000-0569/2019.01.09

    He H P, Xian H Y, Zhu J X, et al. Perspective of mineral reactivity from surfaces to crystal faces: A case study on the oxidation behavior differences among various crystal faces of pyrite. Acta Petrol Sin, 2019, 35(1): 129 doi: 10.18654/1000-0569/2019.01.09
    [14]
    Alfonso D R. Computational investigation of FeS2 surfaces and prediction of effects of sulfur environment on stabilities. J Phys Chem C, 2010, 114(19): 8971 doi: 10.1021/jp100578n
    [15]
    Zhu J X, Xian H Y, Lin X J, et al. Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution. Geochim Cosmochim Acta, 2018, 228: 259 doi: 10.1016/j.gca.2018.02.050
    [16]
    Xian Y J, Wen S M, Chen X M, et al. Effect of lattice defects on the electronic structures and floatability of pyrites. Int J Miner Metall Mater, 2012, 19(12): 1069 doi: 10.1007/s12613-012-0672-5
    [17]
    de Oliveira C M, Müller T G, André R A, et al. Pyrite from coal mining: High-energy milling and analysis of the electrical and optical properties. Mate Lett, 2019, 253: 339 doi: 10.1016/j.matlet.2019.07.003
    [18]
    Abraitis P K, Pattrick R A D, Vaughan D J. Variations in the compositional, textural and electrical properties of natural pyrite: a review. Int J Miner Process, 2004, 74(1-4): 41 doi: 10.1016/j.minpro.2003.09.002
    [19]
    Savage K S, Stefan D, Lehner S W. Impurities and heterogeneity in pyrite: Influences on electrical properties and oxidation products. Appl Geochem, 2008, 23(2): 103 doi: 10.1016/j.apgeochem.2007.10.010
    [20]
    Tao D P, Richardson P E, Luttrell G H, et al. Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes. Electrochim Acta, 2003, 48(24): 3615 doi: 10.1016/S0013-4686(03)00482-1
    [21]
    Wang H, Dowd P A, Xu C S. A reaction rate model for pyrite oxidation considering the influence of water content and temperature. Miner Eng, 2019, 134: 345 doi: 10.1016/j.mineng.2019.02.002
    [22]
    Li X L, Gao M, Hiroyoshi N, et al. Suppression of pyrite oxidation by ferric-catecholate complexes: An electrochemical study. Miner Eng, 2019, 138: 226 doi: 10.1016/j.mineng.2019.05.005
    [23]
    Owusu C, Addai-Mensah J, Fornasiero D, et al. Estimating the electrochemical reactivity of pyrite ores-their impact on pulp chemistry and chalcopyrite flotation behaviour. Adv Powder Technol, 2013, 24(4): 801 doi: 10.1016/j.apt.2013.05.006
    [24]
    Kocabag D, Shergold H L, Kelsall G H. Natural oleophilicity/hydrophobicity of sulphide minerals, II. Pyrite. Int J Miner Process, 1990, 29(3-4): 211 doi: 10.1016/0301-7516(90)90054-3
    [25]
    Chandra A P, Gerson A R. Pyrite (FeS2) oxidation: A sub-micron synchrotron investigation of the initial steps. Geochim Cosmochim Acta, 2011, 75(20): 6239 doi: 10.1016/j.gca.2011.08.005
    [26]
    Tu Z H, Wan J J, Guo C L, et al. Electrochemical oxidation of pyrite in pH 2 electrolyte. Electrochim Acta, 2017, 239: 25 doi: 10.1016/j.electacta.2017.04.049
    [27]
    Tao D P, Wang Y, Li L. An electrochemical study of surface oxidation and collectorless flotation of pyrite. Int J Electrochem Sci, 2018, 13(6): 5971
    [28]
    Owusu C, e Abreu S B, Skinner W, et al. The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Miner Eng, 2014, 55: 87 doi: 10.1016/j.mineng.2013.09.018
    [29]
    Peng Y J, Wang B, Gerson A. The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding. Int J Miner Process, 2012, 102-103: 141 doi: 10.1016/j.minpro.2011.11.010
    [30]
    Chandra A P, Puskar L, Simpson D J, et al. Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation. Int J Miner Process, 2012, 114-117: 16 doi: 10.1016/j.minpro.2012.08.003
    [31]
    Liu Y, Dang Z, Wu P X, et al. Influence of ferric iron on the electrochemical behavior of pyrite. Ionics, 2011, 17(2): 169 doi: 10.1007/s11581-010-0492-4
    [32]
    Huai Y Y, Plackowski C, Peng Y J. The effect of gold coupling on the surface properties of pyrite in the presence of ferric ions. Appl Surf Sci, 2019, 488: 277 doi: 10.1016/j.apsusc.2019.05.236
    [33]
    Guo B, Peng Y J, Espinosa-Gomez R. Effects of free cyanide and cuprous cyanide on the flotation of gold and silver bearing pyrite. Miner Eng, 2015, 71: 194 doi: 10.1016/j.mineng.2014.11.016
    [34]
    Guo B, Peng Y J, Espinosa-Gomez R. Cyanide chemistry and its effect on mineral flotation. Miner Eng, 2014, 66-68: 25 doi: 10.1016/j.mineng.2014.06.010
    [35]
    Mu Y F, Peng Y J, Lauten R A. The depression of pyrite in selective flotation by different reagent systems-A literature review. Miner Eng, 2016, 96-97: 143 doi: 10.1016/j.mineng.2016.06.018
    [36]
    Janetski N D, Woodburn S I, Woods R. An electrochemical investigation of pyrite flotation and depression. Int J Miner Process, 1977, 4(3): 227 doi: 10.1016/0301-7516(77)90004-7
    [37]
    Khmeleva T N, Beattie D A, Georgiev T V, et al. Surface study of the effect of sulphite ions on copper-activated pyrite pre-treated with xanthate. Miner Eng, 2003, 16(7): 601 doi: 10.1016/S0892-6875(03)00133-X
    [38]
    Ahmadi M, Gharabaghi M, Abdollahi H. Effects of type and dosages of organic depressants on pyrite floatability in microflotation system. Adv Powder Technol, 2018, 29(12): 3155 doi: 10.1016/j.apt.2018.08.015
    [39]
    Gregory J, Barany S. Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface Sci, 2011, 169(1): 1 doi: 10.1016/j.cis.2011.06.004
    [40]
    Bicak O, Ekmekci Z, Bradshaw D J, et al. Adsorption of guar gum and CMC on pyrite. Miner Eng, 2007, 20(10): 996 doi: 10.1016/j.mineng.2007.03.002
    [41]
    Mu Y F, Peng Y J, Lauten R A. The mechanism of pyrite depression at acidic pH by lignosulfonate-based biopolymers with different molecular compositions. Miner Eng, 2016, 92: 37 doi: 10.1016/j.mineng.2016.02.007
    [42]
    Mu Y F, Peng Y J, Lauten R A. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant. Electrochim Acta, 2015, 174: 133 doi: 10.1016/j.electacta.2015.05.150
    [43]
    Bruckard W J, Sparrow G J, Woodcock J T. A review of the effects of the grinding environment on the flotation of copper sulphides. Inter J Miner Process, 2011, 100(1-2): 1 doi: 10.1016/j.minpro.2011.04.001
    [44]
    Peng Y J, Grano S, Fornasiero D, et al. Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. Int J Miner Process, 2003, 69(1-4): 87 doi: 10.1016/S0301-7516(02)00119-9
    [45]
    Huang G, Grano S. Galvanic interaction of grinding media with pyrite and its effect on floatation. Miner Eng, 2005, 18(12): 1152 doi: 10.1016/j.mineng.2005.06.005
    [46]
    Corin K C, Song Z G, Wiese J G, et al. Effect of using different grinding media on the flotation of a base metal sulphide ore. Miner Eng, 2018, 126: 24 doi: 10.1016/j.mineng.2018.06.019
    [47]
    Mu Y F, Cheng Y P, Peng Y J. The interaction between grinding media and collector in pyrite flotation at neutral and slightly acidic pH. Miner Eng, https://doi.org/10.1016/j.mineng.2019.106063.
    [48]
    Mu Y F, Cheng Y P, Peng Y J. The interaction of grinding media and collector in pyrite flotation at alkaline pH. Miner Eng, 2010, 152: 106344
    [49]
    Peng Y J, Grano S. Inferring the distribution of iron oxidation species on mineral surfaces during grinding of base metal sulphides. Electrochim Acta, 2010, 55(19): 5470 doi: 10.1016/j.electacta.2010.04.097
    [50]
    Cohn C A, Mueller S, Wimmer E, et al. Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochem Trans, 2006, 7: 3 doi: 10.1186/1467-4866-7-3
    [51]
    Nooshabadi A J, Larsson A C, Kota H R. Formation of hydrogen peroxide by pyrite and its influence on flotation. Miner Eng, 2013, 49: 128 doi: 10.1016/j.mineng.2013.05.016
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(3)

    Article views (2285) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频