<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
WANG Jun-yan, ZHOU Tian, Lü Liang-sheng, YANG Quan-bing. Improvement of plastic pipe–concrete interface impermeability[J]. Chinese Journal of Engineering, 2021, 43(5): 647-655. doi: 10.13374/j.issn2095-9389.2020.06.21.002
Citation: WANG Jun-yan, ZHOU Tian, Lü Liang-sheng, YANG Quan-bing. Improvement of plastic pipe–concrete interface impermeability[J]. Chinese Journal of Engineering, 2021, 43(5): 647-655. doi: 10.13374/j.issn2095-9389.2020.06.21.002

Improvement of plastic pipe–concrete interface impermeability

doi: 10.13374/j.issn2095-9389.2020.06.21.002
More Information
  • Corresponding author: E-mail: 14529@#edu.cn
  • Received Date: 2020-06-21
  • Publish Date: 2021-05-25
  • Concrete structures, such as bridge piers and pile foundations, in tidal/splash zones and soil–air transition zones in saline environments often suffer more severe structural corrosion and reinforcement corrosion than the structures completely in water, soil, or air. The application of plastic-pipe concrete can effectively solve this problem. Plastic-pipe concrete is formed by pouring concrete into a large-diameter plastic pipe with a certain structural size. Plastic pipes can protect the bridge piers and eliminate the water level change area and the soil–air junction area in structural design, to realize the integrated anti-corrosion protection of the bridge piers in the saline environment. The anti-corrosion protection effect of the plastic-pipe–concrete system depends on the impermeability of the plastic pipe–concrete interface. The difference in linear expansion coefficient between the plastic pipe and concrete and the shrinkage of the core concrete will damage the bonding layer between the plastic pipe and concrete, consequently affecting the interface impermeability. To improve the impermeability of the plastic pipe–concrete interface, the effect of a pressure-sensitive adhesive tape (Preprufe double-sided tape) attached to the plastic pipe–concrete interface was studied. Experiments were conducted to determine the interfacial bond strength, interfacial water penetration height, and interfacial air permeability, and the gas pressure–time decay curve was measured, and the interface permeability index was deduced. The experiment results show that the relationship between the interfacial bond strength and the adhesive tape width can be preliminarily considered as a power function distribution. The bond strength formed between the pressure-sensitive adhesive layer and the liquid concrete during the hardening process is much greater than that between the ordinary adhesive tape and the plastic pipe. Pasting the Preprufe tapes can significantly improve the impermeability of the plastic pipe–concrete interface. The interfacial permeability index decreases with the increase in the adhesive tape width, and the interfacial permeability index coefficient of plastic pipe–concrete specimens with 220 mm–wide tape is only 2.86% of that of the specimens without tape. The Preprufe double-sided pressure-sensitive tape has good performance in improving the impermeability of plastic pipe–concrete interfaces. In engineering applications, the adhesive tape width can be selected based on the required effect and cost.

     

  • loading
  • [1]
    Mohammed T U. Hamada H, Yamaji T. Performance of seawater-mixed concrete in the tidal environment. Cem Concr Res, 2004, 34(4): 593 doi: 10.1016/j.cemconres.2003.09.020
    [2]
    吳金海. 海洋環境下混凝土結構耐久性研究[學位論文]. 杭州: 浙江大學, 2004

    Wu J H. Study on the Durability of Reinforced Concrete Structure in Marine Environment [Dissertation]. Hangzhou: Zhejiang University, 2004
    [3]
    Elnaggar E M, Elsokkary T M, Shohide M A, et al. Surface protection of concrete by new protective coating. Constr Build Mater, 2019, 220: 245 doi: 10.1016/j.conbuildmat.2019.06.026
    [4]
    Elhalawany N R, Nawwar G A M. Novel polymer/hybrid coatings for concrete protection using poly methyl methacrylate (scrap) as seeded particles. J Elastomers Plast, 2015, 47(4): 370 doi: 10.1177/0095244313514990
    [5]
    Swamy R N, Tanikawa S. Surface Coating for Sustainable Protection and Rehabilitation of Concrete Structures. Tokyo: Kohbunsha, 2012
    [6]
    Larsen K P. Surface-applied corrosion inhibitors extend life of reinforced steel concrete structures. Mater Perform, 2019, 58(3): 12
    [7]
    Lu Y Y, Hu J Y, Li S, et al. Active and passive protection of steel reinforcement in concrete column using carbon fibre reinforced polymer against corrosion. Electrochim Acta, 2018, 278: 124 doi: 10.1016/j.electacta.2018.05.037
    [8]
    周揚, 陳翠翠, 蔡景順, 等. 耐蝕鋼筋的腐蝕行為及其與阻銹劑的協同防腐作用. 建筑材料學報, 2016, 19(2):379

    Zhou Y, Chen C C, Cai J S, et al. Corrosion behavior of corrosion resistant reinforcing steels and their synergistic corrosion resistant effect with corrosion inhibitor. J Build Mater, 2016, 19(2): 379
    [9]
    Whitmore D, Miltenberger M. Galvanic cathodic protection of corroded reinforced concrete structures. Mater Perform, 2019, 58(10): 24
    [10]
    左俊卿, 姚武. CNT-CF 水泥基材料輔助陽極對鋼筋混凝土陰極保護影響. 建筑材料學報, 2016, 19(3):424

    Zuo J Q, Yao W. Effect of CNT-CF cement-based materials auxiliary anode on cathodic protection of reinforced concrete. J Build Mtear, 2016, 19(3): 424
    [11]
    Mangaiyarkarasi G, Muralidharan S. Electrochemical protection of steel in concrete to enhance the service life of concrete structures. Procedia Eng, 2014, 86: 615 doi: 10.1016/j.proeng.2014.11.087
    [12]
    張彥軍, 韓文禮, 張貽剛, 等. 海洋平臺樁腿防腐層修復三層包覆防護結構研究與應用. 表面技術, 2016, 45(11):123

    Zhang Y J, Han W L, Zhang Y G, et al. Research and application of three-layer coating protective structure for offshore platform pile leg. Surf Technol, 2016, 45(11): 123
    [13]
    胡津津, 石明偉. 海洋平臺的腐蝕及防腐技術. 中國海洋平臺, 2008, 23(6):39

    Hu J J, Shi M W. Corrosion and anticorrosion technology in offshore platforms. China Offshore Platform, 2008, 23(6): 39
    [14]
    Strange A E. Corrosion control with induced tension polymer wraps. Materials Performance, 1996, 35(10): 32
    [15]
    GCP Applied Technologies Inc. Below grade waterproofing brings massive transit project back on track [EB/OL]. [2020-04-10]. https://gcpat.com/en/solutions/products/preprufe-membrane-pre-applied-waterproofing-solutions/preprufe-scs-us-version
    [16]
    丁紅梅. 高分子自粘膠膜防水卷材及其預鋪施工技術 //中國土木工程學會隧道與地下工程分會防水排水專業委員會第十五屆學術交流會論文集. 昆明, 2011: 93

    Ding H M. Prefabricated polymer self-adhesive waterproofing membrane and its construction technology // Proceedings of the 15th Academic Exchange Meeting of the Waterproofing and Drainage Professional Committee of the Tunnel and Underground Engineering Branch of the China Civil Engineering Society. Kunming, 2011: 93
    [17]
    劉兵科, 邵翔宇, 呂軍斗. 預鋪式自粘防水卷材在北京地鐵知春路車站的應用// 第二屆全國巖土與工程學術大會論文集. 武漢, 2006: 718

    Liu B K, Shao X Y, Lü J D. Appllication of preprufe waterproof material in Zhichunlu station of Beijing metro // Proceedings of the Second National Geotechnical and Engineering Conference. Wuhan, 2006: 718
    [18]
    Wiercinski R A, Ranganathan A. Waterproofing Membrane: US Patent, US 20120180933.2012-07-19
    [19]
    Sun S M, Li M L, Liu A. A review on mechanical properties of pressure sensitive adhesives. Int J Adhes Adhes, 2013, 41: 98 doi: 10.1016/j.ijadhadh.2012.10.011
    [20]
    姜宇. 給排水管道施工中新型管材的選用及研究進展. 企業技術開發, 2013, 32(5):45

    Jiang Y. Study on the selection and research progress of new type pipes in water supply and drainage construction. Technol Dev Enterprise, 2013, 32(5): 45
    [21]
    Ahmed A, Guo S C, Zhang Z H, et al. A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete. Constr Build Mater, 2020, 256: 119484 doi: 10.1016/j.conbuildmat.2020.119484
    [22]
    Wang J L. Cohesive-bridging zone model of FRP-concrete interface debonding. Eng Fract Mech, 2007, 74(17): 2643 doi: 10.1016/j.engfracmech.2007.02.013
    [23]
    南京水利科學研究院, 中國水利水電科學研究院. DL/T 5150—2001水工混凝土試驗規程. 北京: 中國電力出版社, 2002

    Nanjing Hydraulic Research Institute, China Institute of Water Resources and Hydropower Research. DL/T 5150—2001 Test Code for Hydraulic Concrete. Beijing: China Electric Power Press, 2002
    [24]
    劉文波, 嵇艷玲, 沙元福. 抗滲混凝土試驗間斷的處理. 水利科技與經濟, 1999, 5(1):45

    Liu W B, Ji Y L, Sha Y F. Discontinuous treatment of impervious concrete test. Water Conserv Sci Technol Econ, 1999, 5(1): 45
    [25]
    Martin G R. A method for determining the relative permeability of concrete using gas. Mag Concr Res, 1986, 38(135): 90 doi: 10.1680/macr.1986.38.135.90
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (948) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频