<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
XING Yi, ZHANG Wen-bo, SU Wei, WEN Wei, ZHAO Xiu-juan, YU Jing-xiao. Research of ultra-low emission technologies of the iron and steel industry in China[J]. Chinese Journal of Engineering, 2021, 43(1): 1-9. doi: 10.13374/j.issn2095-9389.2020.06.18.003
Citation: XING Yi, ZHANG Wen-bo, SU Wei, WEN Wei, ZHAO Xiu-juan, YU Jing-xiao. Research of ultra-low emission technologies of the iron and steel industry in China[J]. Chinese Journal of Engineering, 2021, 43(1): 1-9. doi: 10.13374/j.issn2095-9389.2020.06.18.003

Research of ultra-low emission technologies of the iron and steel industry in China

doi: 10.13374/j.issn2095-9389.2020.06.18.003
More Information
  • Corresponding author: E-mail: suwei@ustb.edu.cn
  • Received Date: 2020-06-18
  • Publish Date: 2021-01-25
  • In today’s world, the overall output of China’s steel industry accounts for more than 50% of the world’s steel output; however, China’s steel industry is dominated by lengthy processes featuring multiple steps, high energy consumption, wide variety of pollutants, and large amounts of pollutants. The steel industry is a pillar of China’s national economy, and it involves a wide range of related industries; thus, it plays a pivotal role in the development of the national economy. With the continuous strengthening of air pollution control, especially since the implementation of ultra-low emissions in the thermal power industry, the main pollutant emissions of the iron and steel industry have exceeded that of the power industry. Thus, becoming the largest source of industrial pollutants. Unfortunately, the emission of huge amounts of pollutants greatly restricts the pace of economic and social progress. Since the 13th Five-Year Plan, a series of powerful measures have been introduced at the central to the local levels to promote ultra-low emissions throughout the steel industry. With the deepening of ultra-low emissions in China’s iron and steel industry, in-depth governance of the iron and steel industry is imminent. This article summarized several traditional multi-pollutant control technologies and discussed “multi-pollutant synergistic removal technology based on the magnesium method”. Four new types of ultra-low emission technologies in the iron and steel industry were summarized: “multi-pollutant collection and adsorption removal technology for flue gas”, “multi-pollutant mid-low temperature synergistic catalytic purification technology”, and “sintering flue gas circulation technology”. The necessity and difficulties of ultra-low emissions in the industry, the rationalization of recommendations for promoting ultra-low emissions, and the prospects for the next step in deepening ultra-low emissions in the steel industry (source governance) were discussed. It is beneficial to promote the coordinated control and treatment of multiple processes and multiple pollutants in the steel industry.

     

  • loading
  • [1]
    賀克斌. 打贏藍天保衛戰需要加快鋼鐵行業超低排放改造. 中國環境報, 2019-05-06

    He K B. Winning the defense of the blue sky needs to accelerate the ultra-low emission transformation of the steel industry. China Environ News, 2019-05-06
    [2]
    中華人民共和國環境保護部, 國家質量監督檢驗檢疫總局. GB 28662—2012鋼鐵燒結球團工業大氣污染物排放標準. 北京: 中國環境科學出版社, 2012

    Ministry of Environmental Protection of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB 28662—2012 Emission Standard of Air Pollutants for Sintering and Pelletizing of Iron and Steel Industry. Beijing: China Environmental Science Press, 2012
    [3]
    李新創. 新時代鋼鐵工業高質量發展之路. 鋼鐵, 2019, 54(1):1

    Li X C. Road map to high-quality development of iron and steel industry in new age. Iron Steel, 2019, 54(1): 1
    [4]
    趙春麗, 喬皎. 我國焦化行業面臨的環境困境及綠色轉型策略. 化工環保, 2019, 39(3):321 doi: 10.3969/j.issn.1006-1878.2019.03.014

    Zhao C L, Qiao J. Environmental dilemma and green transformation strategy for coking industry in China. Environ Prot Chem Ind, 2019, 39(3): 321 doi: 10.3969/j.issn.1006-1878.2019.03.014
    [5]
    丁焰, 劉大鈞. 鋼鐵業清潔運輸是難題. 中國環境報, 2020-02-03

    Ding Y, Liu D J. Clean transportation in the steel industry is a problem. China Environ News, 2020-02-03
    [6]
    沈偉亮. 鋼鐵企業開展降塵達標攻關工作綜合防治粉塵無組織排放. 環境與發展, 2017, 29(4):70

    Shen W L. Iron and steel enterprises to carry out dust reduction standards work comprehensive prevention and control of dust emissions. Environ Dev, 2017, 29(4): 70
    [7]
    李建旻. 關于鋼鐵企業開展綠色物流的問題和措施淺析. 冶金管理, 2019(18):45

    Li J M. Analysis on the problems and measures of green logistics in iron and steel enterprises. Metall Manage, 2019(18): 45
    [8]
    李新創. 全面落實超低排放要求 加快鋼鐵行業綠色轉型. 世界金屬導報, 2018-12-11

    Li X C. Fully implement ultra-low emission requirements, accelerate the green transformation of the steel industry. World Met Herald, 2018-12-11
    [9]
    初琨. 循環氧化吸收脫硝技術在鋼鐵行業的研究與應用. 福建師大福清分校學報, 2019(5):10 doi: 10.3969/j.issn.1008-3421.2019.05.003

    Chu K. Research and application on denitrification technology of circulating oxidation and absorption in iron and steel industry. J Fuqing Branch Fujian Normal Univ, 2019(5): 10 doi: 10.3969/j.issn.1008-3421.2019.05.003
    [10]
    趙晶. 臭氧氧化脫硝原理及對臭氧污染的影響分析. 綠色科技, 2018(12):121

    Zhao J. The principle of ozone oxidative denitrification and its impact on ozone pollution. J Green Sci Technol, 2018(12): 121
    [11]
    韓加友, 石振倉, 黃利華. 臭氧氧化協同半干法同時脫硫脫硝在燒結機煙氣工業的應用. 石油與天然氣化工, 2019, 48(5):19 doi: 10.3969/j.issn.1007-3426.2019.05.004

    Han J Y, Shi Z C, Huang L H. Application study on simultaneous removal of NOx and SO2 by ozonation combined with semi-dry process in sintering machine flue gas industry. Chem Eng Oil Gas, 2019, 48(5): 19 doi: 10.3969/j.issn.1007-3426.2019.05.004
    [12]
    胡沈達, 蘇偉, 邢奕, 等. O3氧化–濕式鎂法同步脫除燒結煙氣NOx和SO2的中試研究. 環境工程, 2020, 38(5):102

    Hu S D, Su W, Xing Y, et al. Pilot-scale test on removal of NOx and SO2 from sintering flue gas by ozone oxidation combined with magnesium wet absorption. Environ Eng, 2020, 38(5): 102
    [13]
    張奇, 萬利遠, 劉新, 等. 新形勢下燒結煙氣凈化技術的發展. 礦業工程, 2019, 17(1):30

    Zhang Q, Wan L Y, Liu X, et al. The development of sintering flue gas purification in new situation. Min Eng, 2019, 17(1): 30
    [14]
    萬利遠, 張奇, 丁志偉. 日鋼2號600 m2燒結機煙氣凈化工藝的選擇及應用. 礦業工程, 2016, 14(4):38 doi: 10.3969/j.issn.1671-8550.2016.04.013

    Wan L Y, Zhang Q, Ding Z W. The selection and application of flue gas cleaning process of No.2 600 m2 sintering machine of Rizhao Steel. Min Eng, 2016, 14(4): 38 doi: 10.3969/j.issn.1671-8550.2016.04.013
    [15]
    李強. 太鋼燒結煙氣二惡英減排技術應用及分析. 環境工程, 2013, 31(4):93

    Li Q. Application & analysis of dioxin emissions reduction technology of TISCO sinter flue gas. Environ Eng, 2013, 31(4): 93
    [16]
    李風民. 邯鋼燒結煙氣活性炭法脫硫脫硝技術應用實踐//2017京津冀及周邊地區鋼鐵行業廢氣排放深度治理和利用技術交流會論文集. 唐山, 2017: 18

    Li F M. Practice of sintering flue gas activated carbon desulfurization and denitration technology in Hangang//Proceedings of the 2017 Beijing-Tianjin-Hebei and Surrounding Areas Iron and Steel Industry Exhaust Gas Treatment and Utilization. Tangshan, 2017: 18
    [17]
    韓健, 閻占海, 邵久剛. 逆流式活性炭煙氣脫硫脫硝技術特點及應用. 燒結球團, 2018, 43(6):13

    Han J, Yan Z H, Shao J G. Technical characteristics of counter flow active carbon -flue gas desulphurization and denitrification process and its application. Sinter Pelletiz, 2018, 43(6): 13
    [18]
    孫廣明, 尹華, 霍延中, 等. 焦爐煙道氣脫硫脫硝工藝探討. 燃料與化工, 2017, 48(6):41

    Sun G M, Yin H, Huo Y Z, et al. Study on coke oven flue gas de-SOx & de-NOx technology. Fuel Chem Processes, 2017, 48(6): 41
    [19]
    董艷蘋. 焦爐煙道氣脫硫脫硝現狀和工藝路線探討. 中國市場, 2016(28):97

    Dong Y P. Discussion on the status and process of desulfurization and denitrification of coke oven flue gas. China Market Marketing, 2016(28): 97
    [20]
    Fan X H, Wong G J, Gan M, et al. Establishment of refined sintering flue gas recirculation patterns for gas pollutant reduction and waste heat recycling. J Clean Prod, 2019, 235: 1549 doi: 10.1016/j.jclepro.2019.07.003
    [21]
    劉文權. 燒結煙氣循環技術創新和應用. 山東冶金, 2014(3):5 doi: 10.3969/j.issn.1004-4620.2014.03.003

    Liu W Q. Technical innovation and application of sintering flue gas circulation. Shandong Metall, 2014(3): 5 doi: 10.3969/j.issn.1004-4620.2014.03.003
    [22]
    王濤, 謝春帥. 燒結煙氣循環技術研究進展與展望. 冶金能源, 2020, 39(2):55

    Wang T, Xie C S. Research progress and prospect of sintering flue gas circulation technology. Metall Energy, 2020, 39(2): 55
    [23]
    李超群, 徐文青, 朱廷鈺. 燒結煙氣循環技術研究現狀與發展前景. 河北冶金, 2019(增刊1): 1

    Li C Q, Xu W Q, Zhu T Y. Recent advances and development prospect of sintering flue gas cycle technology. Hebei Metall, 2019(Suppl 1): 1
    [24]
    李詩京, 徐克. 煙氣循環對燒結機脫硫脫硝的影響. 冶金設備, 2019(5):32

    Li S J, Xu K. Influence of flue gas circulation on desulfurization and denitrification of sintering machine. Metall Equip, 2019(5): 32
    [25]
    Yu Z Y, Fan X H, Gan M, et al. Reaction behavior of SO2 in the sintering process with flue gas recirculation. J Air Waste Manage Assoc, 2016, 66(7): 687 doi: 10.1080/10962247.2016.1167790
    [26]
    Yu Z Y, Fan X H, Gan M, et al. NOx reduction in the iron ore sintering process with flue gas recirculation. JOM, 2017, 69(9): 1570 doi: 10.1007/s11837-017-2268-z
    [27]
    尹鵬, 張志永, 類振. 關于鋼鐵工業污染物超低排放及對策思考. 化工管理, 2019(23):56 doi: 10.3969/j.issn.1008-4800.2019.23.040

    Yin P, Zhang Z Y, Lei Z. On the ultra-low emission of pollutants in the iron and steel industry. Chem Enterprise Manage, 2019(23): 56 doi: 10.3969/j.issn.1008-4800.2019.23.040
    [28]
    李新創. 扎實推進超低排放改造, 夯實鋼鐵高質量發展基礎. 中國環境報, 2019-05-08

    Li X C. Solidly promote ultra-low emission transformation, Consolidate the foundation of high-quality steel development. China Environment News, 2019-05-08
    [29]
    王升龍, 王乃超. 焦爐煙道氣脫硝技術研究進展. 廣東化工, 2019, 46(11):146 doi: 10.3969/j.issn.1007-1865.2019.11.060

    Wang S L, Wang N C. Research progress on denitrification technology of coke oven flue gas. Guangdong Chem Ind, 2019, 46(11): 146 doi: 10.3969/j.issn.1007-1865.2019.11.060
    [30]
    程崢明, 寧文欣, 潘文, 等. 超厚料層均質燒結技術的研究與應用. 燒結球團, 2019, 44(4):7

    Cheng Z M, Ning W X, Pan W, et al. Research and application of ultra-deepbed homogeneous sintering technology. Sinter Pelletiz, 2019, 44(4): 7
    [31]
    易可. 國內外高爐球團礦使用比例. 燒結球團, 2008(4):53

    Yi K. Proportion of blast furnace pellets at home and abroad. Sinter Pelletiz, 2008(4): 53
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)

    Article views (2285) PDF downloads(274) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频