<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
CHEN Liang, FU Dong-mei. Processing and modeling dual-rate sampled data in seawater corrosion monitoring of low alloy steels[J]. Chinese Journal of Engineering, 2022, 44(1): 95-103. doi: 10.13374/j.issn2095-9389.2020.06.17.003
Citation: CHEN Liang, FU Dong-mei. Processing and modeling dual-rate sampled data in seawater corrosion monitoring of low alloy steels[J]. Chinese Journal of Engineering, 2022, 44(1): 95-103. doi: 10.13374/j.issn2095-9389.2020.06.17.003

Processing and modeling dual-rate sampled data in seawater corrosion monitoring of low alloy steels

doi: 10.13374/j.issn2095-9389.2020.06.17.003
More Information
  • Corresponding author: E-mail: fdm_ustb@ustb.edu.cn
  • Received Date: 2020-06-17
    Available Online: 2020-08-10
  • Publish Date: 2022-01-01
  • With the rapid development of Internet of Things technology, the use of front-end sensors realizes the corrosion potential online detection of low alloy steels in a marine environment, thereby obtaining multitudes of corrosion data. Concerning the problems of data information loss and modeling accuracy reduction caused by the use of the traditional mean value method when processing dual-rate corrosion data, a new dual-rate data processing and modeling algorithm combining the comprehensive index value (CIV) and improved relevance vector regression (IRVR) was proposed. First, the CIV was constructed to characterize the comprehensive influence of the input data, and the beetle antennae search (BAS) algorithm was applied to optimize its parameters. Then, linear regression models between the best CIV sequence and the output data were established to convert the dual-rate corrosion data into single-rate data for modeling, which retained more information of the original corrosion data. Finally, the IRVR method based on BAS optimization of compounding kernels was given to establish the prediction model for dual-rate seawater corrosion data of low alloy steels. The results show that the proposed model CIV-IRVR increases the number of modeling samples from 196 for the mean value method to 1834. Moreover, the mean absolute error, root mean square error, and coefficient of determination of the CIV-IRVR model are 1.1914 mV, 1.5729 mV, and 0.9963, respectively, which outperforms commonly used comparison algorithms, such as the artificial neural network (ANN) and support vector regression (SVR). Moreover, the CIV-IRVR model can help obtain the prediction results with error bars, and it has the absolute error distribution closest to 0, which highlights its excellent predictive performance on the seawater corrosion potential of low alloy steels. Thus, the proposed model not only reduces the information loss and improves the modeling accuracy but also has practical significance for modeling dual-rate seawater corrosion data.

     

  • loading
  • [1]
    Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data. Nature, 2015, 527(7579): 441 doi: 10.1038/527441a
    [2]
    Li Z L, Fu D M, Li Y, et al. Application of an electrical resistance sensor-based automated corrosion monitor in the study of atmospheric corrosion. Materials, 2019, 12(7): 1065 doi: 10.3390/ma12071065
    [3]
    Chen M D, Zhang H J, Chen L, et al. An electrochemical method based on OCP fluctuations for anti-corrosion alloy composition optimization. Anti-Corros Methods Mater, 2018, 65(3): 325 doi: 10.1108/ACMM-03-2018-1913
    [4]
    Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors. J Mater Sci Technol, 2021, 64: 214 doi: 10.1016/j.jmst.2020.01.023
    [5]
    倪博溢, 蕭德云. 多采樣率系統的辨識問題綜述. 控制理論與應用, 2009, 26(1):62

    Ni B Y, Xiao D Y. A survey on identification of multirate sampled systems. Control Theory Appl, 2009, 26(1): 62
    [6]
    Kranc G. Input-output analysis of multirate feedback systems. IRE Trans Autom Control, 1957, 3(1): 21 doi: 10.1109/TAC.1957.1104783
    [7]
    Friedland B. Sampled-data control systems containing periodically varying members. IFAC Proc Vol, 1960, 1(1): 371 doi: 10.1016/S1474-6670(17)70078-X
    [8]
    Khargonekar P, Poolla K, Tannenbaum A. Robust control of linear time-invariant plants using periodic compensation. IEEE Trans Autom Control, 1985, 30(11): 1088 doi: 10.1109/TAC.1985.1103841
    [9]
    倪博溢, 蕭德云. 非均勻采樣系統的一種遞推辨識方法. 自動化學報, 2009, 35(12):1520

    Ni B Y, Xiao D Y. A recursive identification method for non-uniformly sampled systems. Acta Autom Sin, 2009, 35(12): 1520
    [10]
    Li D G, Shah S L, Chen T W. Analysis of dual-rate inferential control systems. Automatica, 2002, 38(6): 1053 doi: 10.1016/S0005-1098(01)00295-3
    [11]
    Ding F, Chen T W. Modeling and identification for multirate systems. Acta Autom Sin, 2005, 31(1): 105
    [12]
    Zhi Y J, Fu D M, Zhang D W, et al. Prediction and knowledge mining of outdoor atmospheric corrosion rates of low alloy steels based on the random forests approach. Metals, 2019, 9(3): 383 doi: 10.3390/met9030383
    [13]
    石雅楠, 付冬梅, 支元杰, 等. 基于 ANFIS 改進的大氣腐蝕環境缺失數據填補方法. 裝備環境工程, 2016, 13(6):78

    Shi Y N, Fu D M, Zhi Y J, et al. Improved ANFIS-based imputation method for missing data on atmospheric corrosion environment. Equip Environ Eng, 2016, 13(6): 78
    [14]
    Wei X, Fu D M, Chen M D, et al. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environment. J Mater Sci Technol, 2021, 64: 222 doi: 10.1016/j.jmst.2020.01.040
    [15]
    劉學慶, 唐曉, 王佳. 金屬腐蝕速度與海水環境參數相關模型的人工神經網絡分析. 中國腐蝕與防護學報, 2005, 25(1):11 doi: 10.3969/j.issn.1005-4537.2005.01.003

    Liu X Q, Tang X, Wang J. Correlation between seawater environmental factors and marine corrosion rate using artificial neural network analysis. J Chin Soc Corros Prot, 2005, 25(1): 11 doi: 10.3969/j.issn.1005-4537.2005.01.003
    [16]
    Shirazi A Z, Mohammadi Z. A hybrid intelligent model combining ANN and imperialist competitive algorithm for prediction of corrosion rate in 3C steel under seawater environment. Neural Comput Appl, 2017, 28(11): 3455 doi: 10.1007/s00521-016-2251-6
    [17]
    Wen Y F, Cai C Z, Liu X H, et al. Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression. Corros Sci, 2009, 51(2): 349 doi: 10.1016/j.corsci.2008.10.038
    [18]
    畢傲睿, 駱正山, 喬偉, 等. 基于主成分和粒子群優化支持向量機的管道內腐蝕預測. 表面技術, 2018, 47(9):133

    Bi A R, Luo Z S, Qiao W, et al. Prediction of pipeline inner-corrosion based on principal component analysis and particle swarm optimization-support vector machine. Surf Technol, 2018, 47(9): 133
    [19]
    李明曉, 張恒才, 仇培元, 等. 一種基于模糊長短期神經網絡的移動對象軌跡預測算法. 測繪學報, 2018, 47(12):1660 doi: 10.11947/j.AGCS.2018.20170268

    Li M X, Zhang H C, Qiu P Y, et al. Predicting future locations with deep fuzzy-LSTM network. Acta Geodaet Cartograph Sin, 2018, 47(12): 1660 doi: 10.11947/j.AGCS.2018.20170268
    [20]
    陳閩東, 張帆, 劉智勇, 等. 金屬材料在三亞海水中的腐蝕電位序及合金成分對耐蝕性的影響. 金屬學報, 2018, 54(9):1311 doi: 10.11900/0412.1961.2017.00521

    Chen M D, Zhang F, Liu Z Y, et al. Galvanic series of metals and effect of alloy compositions on corrosion resistance in Sanya seawater. Acta Metall Sin, 2018, 54(9): 1311 doi: 10.11900/0412.1961.2017.00521
    [21]
    Jiang X Y, Li S. BAS: beetle antennae search algorithm for optimization problems. Int J Rob Control, 2018, 1(1): 1 doi: 10.5430/ijrc.v1n1p1
    [22]
    趙玉強, 錢謙, 周田江, 等. 天牛須搜索與遺傳的混合算法. 小型微型計算機系統, 2020, 41(7):1438 doi: 10.3969/j.issn.1000-1220.2020.07.016

    Zhao Y Q, Qian Q, Zhou T J, et al. Hybrid optimization algorithm based on beetle antennae search and genetic evolution. J Chin Comput Syst, 2020, 41(7): 1438 doi: 10.3969/j.issn.1000-1220.2020.07.016
    [23]
    Tipping M E. Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res, 2001, 1: 211
    [24]
    吳小濤. 基于變分模態分解和相關向量機的太陽輻照度預測模型研究[學位論文]. 武漢: 華中科技大學, 2018

    Wu X T. Prediction Model of Solar Irradiance Based on Variational Mode Decomposition and Relevance Vector Machine [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2018
    [25]
    段青, 趙建國, 馬艷. 優化組合核函數相關向量機電力負荷預測模型. 電機與控制學報, 2010, 14(6):33 doi: 10.3969/j.issn.1007-449X.2010.06.006

    Duan Q, Zhao J G, Ma Y. Relevance vector machine based on particle swarm optimization of compounding kernels in elextricity load forecasting. Electr Mach Control, 2010, 14(6): 33 doi: 10.3969/j.issn.1007-449X.2010.06.006
    [26]
    Wu J, Cheng H C, Liu Y Q, et al. Learning soft sensors using time difference-based multi-kernel relevance vector machine with applications for quality-relevant monitoring in wastewater treatment. Environ Sci Pollut Res, 2020, 27(23): 28986 doi: 10.1007/s11356-020-09192-3
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article views (1963) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频