Citation: | ZHANG Ting, XU Hao, LI Zhong-jie, DONG An-ping, XING Hui, DU Da-fan, SUN Bao-de. Development and present situation of laminated metal composites[J]. Chinese Journal of Engineering, 2021, 43(1): 67-75. doi: 10.13374/j.issn2095-9389.2020.06.17.002 |
[1] |
劉曉濤, 張廷安, 崔建忠. 層狀金屬復合材料生產工藝及其新進展. 材料導報, 2002, 16(7):41 doi: 10.3321/j.issn:1005-023X.2002.07.013
Liu X T, Zhang T A, Cui J Z. Technology of clad metal production and its latest progress. Mater Rev, 2002, 16(7): 41 doi: 10.3321/j.issn:1005-023X.2002.07.013
|
[2] |
田廣民, 李選明, 趙永慶, 等. 層狀金屬復合材料加工技術研究現狀. 中國材料進展, 2013(11):696
Tian G M, Li X M, Zhao Y Q, et al. Research status of processing technology of laminated metal composite. Mater China, 2013(11): 696
|
[3] |
Wadsworth J, Lesuer D R. Ancient and modern laminated composites—from the Great Pyramid of Gizeh to Y2K. Mater Charact, 2000, 45(4-5): 289 doi: 10.1016/S1044-5803(00)00077-2
|
[4] |
Wright P K, Snow D A, Tay C K. Interfacial conditions and bond strength in cold pressure welding by rolling. Met Technol, 1978, 5(1): 24 doi: 10.1179/mt.1978.5.1.24
|
[5] |
Sherby O D, Wadsworth J. Ultrahigh carbon steels, Damascus steels, and superplasticity//The 9th International Metallurgical and Materials Congress. Istanbul, 1997
|
[6] |
Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials. 2nd Ed. New York: Wiley, 1983
|
[7] |
Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater, 1999, 47(2): 579 doi: 10.1016/S1359-6454(98)00365-6
|
[8] |
王珺, 雷宇, 劉新華, 等. 水平連鑄復合成形銅鋁層狀復合材料的組織與性能. 工程科學學報, 2020, 42(2):216
Wang J, Lei Y, Liu X H, et al. Microstructure and properties of Cu–Al–laminated composites fabricated via formation of a horizontal continuous casting composite. Chin J Eng, 2020, 42(2): 216
|
[9] |
Mo T Q, Chen Z J, Li B X, et al. Tailoring of interface structure and mechanical properties in ARBed 1100/ 7075 laminated composites by cold rolling. Mater Sci Eng A, 2019, 755: 97 doi: 10.1016/j.msea.2019.03.075
|
[10] |
龔深, 李周, 肖柱, 等. 爆炸焊接法制備金屬復合材料的研究. 材料導報, 2007, 21(專輯): 249
Gong S, Li Z, Xiao Z, er al. Research on preparation of metallic composite with explosive welding. Mater Rev, 2007, 21(Spec): 249
|
[11] |
陳靖, 佟建國, 任學平. 25Cr5MoA/Q235鋼復合板的結合性能. 北京科技大學學報, 2007, 29(10):985 doi: 10.3321/j.issn:1001-053x.2007.10.004
Chen J, Tong J G, Ren X P. Bonding behavior of 25Cr5MoA/Q235 hot rolled clad plates. J Univ Sci Technol Beijing, 2007, 29(10): 985 doi: 10.3321/j.issn:1001-053x.2007.10.004
|
[12] |
秦勤, 鄧俊超, 臧勇, 等. 熱壓316L/Q345R復合板的結合性能. 工程科學學報, 2018, 40(4):469
Qin Q, Deng J C, Zang Y, et al. Factors influencing the combined performance of hot-rolled bimetallic composite plates prepared via hot compression. Chin J Eng, 2018, 40(4): 469
|
[13] |
Zhu H F, Sun W, Kong F T, et al. Interfacial characteristics and mechanical properties of TiAl/Ti6Al4V laminate composite (LMC) fabricated by vacuum hot pressing. Mater Sci Eng A, 2019, 742: 704 doi: 10.1016/j.msea.2018.07.086
|
[14] |
Elias L, Hegde A C. Electrodeposition of laminar coatings of Ni-W alloy and their corrosion behaviour. Surf Coat Technol, 2015, 283: 61 doi: 10.1016/j.surfcoat.2015.10.025
|
[15] |
孟憲靜. 層狀金屬復合材料制備技術現狀及發展方向. 一重技術, 2009(6):7 doi: 10.3969/j.issn.1673-3355.2009.06.003
Meng X J. Present status and developmental direction for manufacturing technique of laminar composite metal. CFHI Technol, 2009(6): 7 doi: 10.3969/j.issn.1673-3355.2009.06.003
|
[16] |
韓剛, 蔣曉博, 程飛, 等. 鎂合金層狀復合材料的爆炸焊接研究. 工程爆破, 2018, 24(4):71 doi: 10.3969/j.issn.1006-7051.2018.04.014
Han G, Jiang X B, Cheng F, et al. Research on explosive welding of magnesium alloy laminated composites. Eng Blast, 2018, 24(4): 71 doi: 10.3969/j.issn.1006-7051.2018.04.014
|
[17] |
王航, 李曉峰, 張煜, 等. 爆炸焊接層狀復合材料國內外發展現況及應用領域簡介. 中國鈦業, 2017(1):16
Wang H, Li X F, Zhang Y, et al. Development and applications of explosive welding layered composite materials at home and abroad. China Tit Ind, 2017(1): 16
|
[18] |
Li L, Nagai K, Yin F X. Progress in cold roll bonding of metals. Sci Technol Adv Mater, 2008, 9(2): 023001 doi: 10.1088/1468-6996/9/2/023001
|
[19] |
Mo T Q, Chen Z J, Chen H, et al. Multiscale interfacial structure strengthening effect in Al alloy laminated metal composites fabricated by accumulative roll bonding. Mater Sci Eng A, 2019, 766: 138354 doi: 10.1016/j.msea.2019.138354
|
[20] |
Kümmel F, Haus?l T, H?ppel H W, et al. Enhanced fatigue lives in AA1050A/AA5005 laminated metal composites produced by accumulative roll bonding. Acta Mater, 2016, 120: 150 doi: 10.1016/j.actamat.2016.08.039
|
[21] |
Li X B, Zu G Y, Wang P. Microstructural development and its effects on mechanical properties of Al/Cu laminated composite. Trans Nonferrous Met Soc China, 2015, 25(1): 36 doi: 10.1016/S1003-6326(15)63576-2
|
[22] |
Kümmel F, Diepold B, Sauer K F, et al. High lightweight potential of ultrafine-grained aluminum/steel laminated metal composites produced by sccumulative roll bonding. Adv Eng Mater, 2019, 21(1): 1800286 doi: 10.1002/adem.201800286
|
[23] |
Rahdari M, Reihanian M, Lari Baghal S M. Microstructural control and layer continuity in deformation bonding of metallic laminated composites. Mater Sci Eng A, 2018, 738: 98 doi: 10.1016/j.msea.2018.09.080
|
[24] |
Mashhadi A, Atrian A, Ghalandari L. Mechanical and microstructural investigation of Zn/Sn multilayered composites fabricated by accumulative roll bonding (ARB) process. J Alloys Compd, 2017, 727: 1314 doi: 10.1016/j.jallcom.2017.08.241
|
[25] |
Mahdavian M M, Ghalandari L, Reihanian M. Accumulative roll bonding of multilayered Cu/Zn/Al: an evaluation of microstructure and mechanical properties. Mater Sci Eng A, 2013, 579: 99 doi: 10.1016/j.msea.2013.05.002
|
[26] |
Mahdavian M M, Khatami-Hamedani H, Abedi H R. Macrostructure evolution and mechanical properties of accumulative roll bonded Al/Cu/Sn multilayer composite. J Alloys Compd, 2017, 703: 605 doi: 10.1016/j.jallcom.2017.01.300
|
[27] |
Roy S, Nataraj B R, Suwas S, et al. Accumulative roll bonding of aluminum alloys 2219/5086 laminates: microstructural evolution and tensile properties. Mater Des, 2012, 36: 529 doi: 10.1016/j.matdes.2011.11.015
|
[28] |
Ghalandari L, Mahdavian M, Reihanian M, et al. Production of Al/Sn multilayer composite by accumulative roll bonding (ARB): a study of microstructure and mechanical properties. Mater Sci Eng A, 2016, 661: 179 doi: 10.1016/j.msea.2016.02.070
|
[29] |
Reihanian M, Naseri M. An analytical approach for necking and fracture of hard layer during accumulative roll bonding (ARB) of metallic multilayer. Mater Des, 2016, 89: 1213 doi: 10.1016/j.matdes.2015.10.088
|
[30] |
Wang H, Su L H, Yu H L, et al. A new finite element model for multi-cycle accumulative roll-bonding process and experiment verification. Mater Sci Eng A, 2018, 726: 93 doi: 10.1016/j.msea.2018.04.040
|
[31] |
Rohatgi A, Harach D J, Vecchio K S, rt al. Resistance-curve and fracture behavior of Ti–Al3Ti metallic-intermetallic laminate (MIL) composites. Acta Mater, 2003, 51(10): 2933 doi: 10.1016/S1359-6454(03)00108-3
|
[32] |
Fan M Y, Luo Z F, Fu Z X, et al. Vacuum hot pressing and fatigue behaviors of Ti/Al laminate composites. Vacuum, 2018, 154: 101 doi: 10.1016/j.vacuum.2018.04.047
|
[33] |
Jiao F F, Liu M Y, Jiang F C, et al. Continuous carbon fiber reinforced Ti/Al3Ti metal-intermetallic laminate (MIL) composites fabricated using ultrasonic consolidation assisted hot pressing sintering. Mater Sci Eng A, 2019, 765: 138255 doi: 10.1016/j.msea.2019.138255
|
[34] |
Torabinejad V, Aliofkhazraei M, Rouhaghdam A S, et al. Tribological performance of Ni–Fe–Al2O3 multilayer coatings deposited by pulse electrodeposition. Wear, 2017, 380-381: 115 doi: 10.1016/j.wear.2017.03.013
|
[35] |
Allahyarzadeh M H, Aliofkhazraei M, Rouhaghdam A S, et al. Electrodeposition mechanism and corrosion behavior of multilayer nanocrystalline nickel-tungsten alloy. Electrochim Acta, 2017, 258: 883 doi: 10.1016/j.electacta.2017.11.139
|
[36] |
Peng C, Zhao Y H, Jin S J, et al. Antibacterial TiCu/TiCuN multilayer films with good corrosion resistance deposited by axial magnetic field-enhanced arc ion plating. ACS Appl Mater Interfaces, 2019, 11(1): 125 doi: 10.1021/acsami.8b14038
|
[37] |
Zhang L, Meng L. Evolution of microstructure and electrical resistivity of Cu–12wt.%Ag filamentary microcomposite with drawing deformation. Scripta Mater, 2005, 52(12): 1187 doi: 10.1016/j.scriptamat.2005.03.016
|
[38] |
Ghalandari L, Moshksar M M. High-strength and high-conductive Cu/Ag multilayer produced by ARB. J Alloys Compd, 2010, 506(1): 172 doi: 10.1016/j.jallcom.2010.06.172
|
[39] |
Huo J Z, Wei M Z, Ma Y J, et al. The enhanced strength and electrical conductivity in Ag/Cu multilayers by annealing process. Mater Sci Eng A, 2020, 772: 138818 doi: 10.1016/j.msea.2019.138818
|
[40] |
DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components - Process, structure and properties. Prog Mater Sci, 2018, 92: 112 doi: 10.1016/j.pmatsci.2017.10.001
|
[41] |
Lima D D, Mantri S A, Mikler C V, et al. Laser additive processing of a functionally graded internal fracture fixation plate. Mater Des, 2017, 130: 8 doi: 10.1016/j.matdes.2017.05.034
|
[42] |
Behera R R, Hasan A, Sankar M S, et al. Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility. Surf Coat Technol, 2018, 352: 420 doi: 10.1016/j.surfcoat.2018.08.044
|
[43] |
Liu W P, DuPont J N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping. Scripta Mater, 2003, 48(9): 1337 doi: 10.1016/S1359-6462(03)00020-4
|
[44] |
Zhang T, Xu H, Li Z J, et al. Microstructure and properties of TC4/TNTZO multi-layered composite by direct laser deposition. J Mech Behav Biomed Mater, 2020, 109: 103842 doi: 10.1016/j.jmbbm.2020.103842
|
[45] |
Markandan K, Lim R, Kanaujia P K, et. al. Additive manufacturing of composite materials and functionally graded structures using selective heat melting technique. J Mater Sci Technol, 2020, 47: 243 doi: 10.1016/j.jmst.2019.12.016
|
[46] |
Du D F, Haley J C, Dong A P, et al. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy. Mater Des, 2019, 181: 107923 doi: 10.1016/j.matdes.2019.107923
|
[47] |
Todaro C J, Easton M A, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun, 2020, 11: 142 doi: 10.1038/s41467-019-13874-z
|
[48] |
Cohades A, Cetin A, Mortensen A. Designing laminated metal composites for tensile ductility. Mater Des, 2015, 66: 412 doi: 10.1016/j.matdes.2014.08.061
|